

Napalm-logs

Python library to parse syslog messages from network devices and produce JSON
serializable Python objects, in a vendor agnostic shape. The output objects are
structured following the OpenConfig [http://www.openconfig.net/] or
IETF [https://github.com/YangModels/yang/tree/master/standard/ietf] YANG models.

For example, the following syslog message from a Juniper device:

<149>Jun 21 14:03:12 vmx01 rpd[2902]: BGP_PREFIX_THRESH_EXCEEDED: 192.168.140.254 (External AS 4230): Configured maximum prefix-limit threshold(140) exceeded for inet4-unicast nlri: 141 (instance master)

Will produce the following object:

{
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "peer_as": "4230"
 },
 "afi_safis": {
 "afi_safi": {
 "inet4": {
 "state": {
 "prefixes": {
 "received": 141
 }
 },
 "ipv4_unicast": {
 "prefix_limit": {
 "state": {
 "max_prefixes": 140
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "message_details": {
 "processId": "2902",
 "severity": 5,
 "facility": 18,
 "hostPrefix": null,
 "pri": "149",
 "processName": "rpd",
 "host": "vmx01",
 "tag": "BGP_PREFIX_THRESH_EXCEEDED",
 "time": "14:03:12",
 "date": "Jun 21",
 "message": "192.168.140.254 (External AS 4230): Configured maximum prefix-limit threshold(140) exceeded for inet4-unicast nlri: 141 (instance master)"
 },
 "timestamp": 1498053792,
 "facility": 18,
 "ip": "127.0.0.1",
 "host": "vmx01",
 "yang_model": "openconfig-bgp",
 "error": "BGP_PREFIX_THRESH_EXCEEDED",
 "os": "junos",
 "severity": 5
}

The library is provided with a command line program which acts as a daemon,
running in background and listening to syslog messages continuously, then
publishing them over secured channels, where multiple clients can subscribe.

It is flexible to listen to the syslog messages via UDP or TCP, but also from
brokers such as Apache Kafka. Similarly, the output objects can be published via
various channels such as ZeroMQ, Kafka, or remote server logging. It is also
pluggable enough to extend these capabilities and listen or publish to other
services, depending on the needs.

The messages are published over a secured channel, encrypted and signed.
Although the security can be disabled, this is highly discouraged.

Output data

The objects published by napalm-logs are structured data, with the hierarchy
standardized in the OpenConfig and IETF models. To check what models are used for
each message type, together with examples of raw syslog messages and sample
output objects, please check the Structured Messages section.

Install

napalm-logs is available on PyPi and can easily be installed using the following
command:

$ pip install napalm-logs

For advanced installation notes, see Installation.

How to use napalm-logs

Basic Configuration

Firstly you need to decide if you would like all messages between napalm-logs
and the clients to be encrypted. If you do want them to be encrypted you will
require a certificate and key, which you can generate using the following
command:

openssl req -nodes -x509 -newkey rsa:4096 -keyout /var/cache/napalm-logs.key -out /var/cache/napalm-logs.crt -days 365

This will provide a self-signed certificate napalm-logs.crt and key
napalm-logs.key under the /var/cache directory.

If you do not require the messages to be encrypted you can ignore the above
step and just use the command line argument --disable-security when starting
napalm-logs.

Each of the other config options come with defaults, so you can now start
napalm-logs with default options and your chosen security options.

Starting napalm-logs

Napalm-logs will need to be run with root privileges if you want it to be able
to listen on udp port 514 - the standard syslog port. If you need to
run it via sudo and it has been installed in a virtual env, you will need to
include the full path. In these examples I will run as root.

To start napalm-logs using the crt and key generated above you should run the
following command:

napalm-logs --certificate /var/cache/napalm-logs.crt --keyfile /var/cache/napalm-logs.key

This will start napalm-logs listening for incoming syslog messages on
0.0.0.0 port 514. It will also start to listen for incoming client
requests on 0.0.0.0 port 49017, and incoming authentication requests on
0.0.0.0 port 49018.
For more information on authentication please see the Client Authentication
section.

Further Configuration

It is possible to change the address and ports that napalm-logs will use, let’s
take a look at these options:

-a ADDRESS, --address=ADDRESS
 Listener address. Default: 0.0.0.0
-p PORT, --port=PORT Listener bind port. Default: 514
--publish-address=PUBLISH_ADDRESS
 Publisher bind address. Default: 0.0.0.0
--publish-port=PUBLISH_PORT
 Publisher bind port. Default: 49017
--auth-address=AUTH_ADDRESS
 Authenticator bind address. Default: 0.0.0.0
--auth-port=AUTH_PORT
 Authenticator bind port. Default: 49018

There are several plugable parts to napalm-logs, two of which are the
listener and the publisher. The listener is the part that ingests the
incoming syslog messages, and the publisher is the part that outputs them to the
client.

You can chose which listener to use, and which publisher to use by using the
following arguments:

--listener=LISTENER Listener type. Default: udp
-t TRANSPORT, --transport=TRANSPORT
 Publish transport. Default: zmq

There are more configuration options, please see Configuration Options
for more details.

Configuration file example

The napalm-logs server can be started without any CLI aguments, as long as they
are correctly specified under the configuration file. The default path of the
configuration file is under /etc/napalm/logs. To select a different
filepath, we can use the -c option:

napalm-logs -c /home/admin/napalm/logs

The configuration file is formatted as YAML, which makes it more human readable.
In general, any configuration option available on the CLI can be specified in
the configuration file, with the mention that hyphen is replaced by underscore,
e.g.: the CLI option auth-address becomes auth_address in the
napalm-logs configuration file.

address: 172.17.17.1
port: 5514
publish_address: 172.17.17.2
publish_port: 49017
transport: zmq
listener:
 kafka:
 bootstrap_servers:
 - 10.10.10.1
 - 10.10.10.2
 - 10.10.10.3

The configuration above listens to the syslog messages from the Kafka bootstrap
servers 10.10.10.1, 10.10.10.2 and 10.10.10.3 then publishes the
structured objects encrypted and serialized via ZeroMQ, serving them at the
address 172.17.17.2, port 49017.

Check the complete list of configuration options under
Configuration Options.

Starting a Client

The client structure depends on how you start the napalm-logs daemon. If the
security is disabled (via the CLI option --disable-security or through the
configuration file, where the disable_security field is set as false),
the client script is as simple as:

#!/usr/bin/env python

import zmq
import napalm_logs.utils

server_address = '127.0.0.1'
server_port = 49017

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,
 port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '')

while True:
 raw_object = socket.recv()
 print(napalm_logs.utils.unserialize(raw_object))

Which subscribes to the ZeroMQ bus and deserializes messages using the
napalm_logs.utils.unserialise helper. The server_address and the
server_port of the client represent the --publish-address and the
--publish-port of the napalm-logs daemon.

When the program is started with security enabled (recommended), the
clients can use the napalm_logs.utils.ClientAuth class, which executes the
handshake to retrieve the encryption key and hex of the verification key. This
class requires the certificate (the same certificate specified when starting
the napalm-logs daemon), as well as the authentication address and port
(corresponding to the --auth-address and --auth-port CLI arguments or
auth_address and auth_port configuration fields sent to the napalm-logs
daemon):

#!/usr/bin/env python

import napalm_logs.utils
import zmq

server_address = '127.0.0.1'
server_port = 49017
auth_address = '127.0.0.1'
auth_port = 49018

certificate = '/var/cache/napalm-logs.crt' # This is the server crt generated earlier

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,
 port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '')

auth = napalm_logs.utils.ClientAuth(certificate,
 address=auth_address,
 port=auth_port)

while True:
 raw_object = socket.recv()
 decrypted = auth.decrypt(raw_object)
 print(decrypted)

	Installation

	Supported devices and configuration

	Configuration Options

	Clients

	Structured Messages

	Client Authentication

	Listener

	Publisher

	Serializer

	Logger

	The format of the syslog messages

	Development

	Release Notes

Installation

Creating a Virtualenv

It is recommended to install all the modules required for a new program into a
Virtual Environment. This ensures that the project dependencies are kept in
its own environment, making sure that you don’t have any versioning issues when
other programs have the same dependencies.

virtualenv napalm-logs

This will create a directory called napalm-logs in the directory that you
are currently in.

Now you need to activate the virtualenv:

source napalm-logs/bin/activate

Installing Napalm-logs

Now install napalm-logs using pip:

pip install napalm-logs

Docker

Napalm-logs can also be deployed via a Docker container.

A Dockerfile has been made available in the GitHub repository [https://github.com/napalm-automation/napalm-logs/tree/master/docker] allowing the configuration of the container to be customized.

Alternatively, a pre-built image is available on Docker Hub [https://hub.docker.com/r/nathancatania/napalm-logs/] which uses the UDP listener and publishes to Kafka by default.
The pre-built image is recommended for testing only as Napalm-logs is executed with security disabled by default.

Usage:

docker run -d -p 6000:514/udp -i nathancatania/napalm-logs:latest

The above command will run the Napalm-logs container and listen on port 6000 (UDP) for incoming messages. By default, the pre-built container attempts to connect to a Kafka broker located at 127.0.0.1:9092 and will publish data to the syslog.net topic.

These defaults can be changed by specifying ENV variables at container runtime. For example:

docker run -d -e KAFKA_BROKER_HOST=192.168.1.200 -e KAFKA_BROKER_PORT=9094 -e KAFKA_TOPIC=my_topic -p 55555:514/udp -i nathancatania/napalm-logs:latest

In this example:

	The container will listen on port 55555 for incoming messages.

	Napalm-logs will connect to a Kafka broker located at 192.168.1.200:9094.

	Data will be published to the Kafka topic my_topic.

A list of available variables which can be changed is included below:

PUBLISH_PORT: 49017 # Source port of the host to publish data to Kafka on
KAFKA_BROKER_HOST: 127.0.0.1 # Hostname or IP of the Kafka broker to publish to
KAFKA_BROKER_PORT: 9092 # Port of the Kafka broker to publish to
KAFKA_TOPIC: syslog.net # The Kafka topic to push data to.
SEND_RAW: true # Publish messages where the OS, but NOT the message could be identified.
SEND_UNKNOWN: false # Publish messages where both OS and message could not be identified.
WORKER_PROCESSES: 1 # Increasing this increases memory consumption but is better for higher loads.

Supported devices and configuration

Napalm-logs can process syslog messages from the following network operating
systems:

	Junos

	Cisco IOS-XR

	Arista EOS

	Cisco NX-OS

To see how to configure the network device, check the documents referenced
above. Note that the examples in each case represents the configuration used to
send the syslog messages over UDP to a certain IP address and port. Remember
that napalm-logs is able to receive the messages over UDP (by default), as well
as via other channels - see Listener. While napalm-logs can be the UDP
endpoint configured to receive the messages straight from the network device,
there is no standard configuration, setup or architecture for the rest of the
Listeners, but rather it depends very much on how you want to design your own
use case.

Napalm-logs is able to publish messages from unidentified operating systems (or
partially parsed messages), but this behaviour is disabled by default.
To allow publishing messages from operating systems that are not supported yet
by napalm-logs (but they will not be parsed at all), you can configure the
send_unknown: False option on the publisher (i.e.,
send_unknow: true). To publish partially parsed messages from supported
operating systems, but without a mapping for a certain class of messages, you
can use the send_raw: False option.

Junos

The following will configure Junos to send the syslog messages, over UDP, to the
IP Address 10.10.10.1, port 10101:

set system syslog host 10.10.10.1 port 10101 any any

Cisco IOS-XR

The following will configure IOS-XR to send the syslog messages, over UDP, to the
IP Address 10.10.10.1, port 10101:

logging 10.10.10.1 port 10101

To correctly send the hostname information, is is also recommended to explicitly
configure the following:

logging hostnameprefix <hostname of the device>

Otherwise the device won’t send this information.

Arista EOS

The following will configure EOS to send the syslog messages, over UDP, to the
IP Address 10.10.10.1, port 10101:

logging host 10.10.10.1 10101

To correctly send the hostname information, is is also recommended to explicitly
configure the following:

logging format hostname fqdn

Cisco NX-OS

The following will configure NX-OS to send the syslog messages, over UDP, to the
IP Address 10.10.10.1, port 10101:

logging server 10.10.10.1 port 10101

Configuration Options

Here we will list all options and what they do.

Command Line

All of the command line arguments can also be added to a config file.

address

The IP address to use to listen for all incoming syslog messages. When using
multiple listeners, it is recommended to specify this option for each listener.

Default: 0.0.0.0.

CLI usage example:

$ napalm-logs -a 172.17.17.1
$ napalm-logs --address 172.17.17.1

Configuration file example:

address: 172.17.17.1

auth-address

The IP address to listen on for incoming authorisation requests.

Default: 0.0.0.0.

CLI usage example:

$ napalm-logs --auth-address 172.17.17.2

Configuration file example:

auth_address: 172.17.17.2

auth-port

The port to listen on for incoming authorisation requests.

Default: 49018

CLI usgae example:

$ napalm-logs --auth-port 2022

Configuration file example:

auth_port: 2022

certificate

The certificate to use for the authorisation process. This will be presented to
incoming clients during the TLS handshake.

CLI usage example:

$ napalm-logs --certificate /var/cache/server.crt

Configuration file example:

certificate: /var/cache/server.crt

config-file

Specifies the file where further configuration options can be found.

Default: /etc/napalm/logs.

CLI usage example:

$ napalm-logs -c /srv/napalm-logs
$ napalm-logs --config-file /srv/napalm-logs

config-path

The directory path where device configuration files can be found. These are the
files that contain the syslog message format for each device.

CLI usage example:

$ napalm-logs --config-path /home/admin/napalm-logs/

Configuration file example:

config_path: /home/admin/napalm-logs/

device-worker-processes: 1

New in version 0.3.0.

This option configures the number of worker processes to be started for each
platform class. For better performances and higher capacity, it is recommended
to increase this number, which defaults to 1, i.e., by default there will be
started a single process per platform.

Note

Increasing the number of processes, will imply higher memory consumption.

For fine-tunning, consider increasing this number, and at the same time
exclude (or include) the appropriate platforms, using the following options:
device_blacklist and
device_whitelist.

disable-security

If set no encryption or message signing will take place. All messages will be in
plain text. The client will not be able to verify that a message was generated
by the server.

It is not recommended to use this in a production environment.

CLI usage example:

$ napalm-logs --disable-security

Configuration file example:

disable_security: true

Note

Starting with release Release 0.4.0 - Codename Crowbar, it is possible to specify
this option for each Publisher individually. See
disable_security: False.

extension-config-path

A path where you can specify further device configuration files that contain the
syslog message format for devices.

CLI usage example:

$ napalm-logs --extension-config-path /home/admin/napalm-logs/

Configuration file example:

extension_config_path: /home/admin/napalm-logs/

hwm: 1000

New in version 0.3.0.

This option controls the ZeroMQ high water mark (the hard limit on the maximum
number of outstanding messages ZeromMQ shall queue in memory).
If this limit has been reached the internal sockets enter an exceptional state,
and ZeroMQ blocks the reception of further messages.
This option can be used to tune the performances of the napalm-logs, in terms of
total messages processed. While the default limit should be generally
enough, in environments with extremely high density of syslog messages to be
processed, it is recommended to increase this value. Keep in mind that a higher
queue implies higher memory consumption.
For maximum capacity, this option can be set to 0, i.e., inifinite queue.

CLI usage example:

$ napalm-logs --hwm 0

Configuration file example:

hwm: 0

keyfile

The private key for the certificate specified by the certificate option.
This will be used to generate a key to encrypt messages.

CLI usage example:

$ napalm-logs --keyfile /var/cache/server.key

Configuration file example:

keyfile: /var/cache/server.key

listener: udp

The module to use when listening for incoming syslog messages. For more details,
see Listener.

Starting with the Release 0.4.0 - Codename Crowbar, you are able to listen to
the syslog messages over multiple concomitant channels. This capability is
available only from the configuration file. For more configuration options for
the listener interface, please check the Listener section.

Default: udp.

CLI usage example:

$ napalm-logs --listener kafka

Configuration file example:

listener: kafka

Multiple listeners configuration example (file):

New in version 0.4.0.

listener:
 - kafka: {}
 - udp:
 address: 1.2.3.4
 port: 5514
 buffer_size: 2048
 - tcp:
 address: 1.2.3.4
 port: 5515

log-file

The file where to send log messages.

If you want log messages to be outputted to the command line you can specify
--log-file cli.

Default: /var/log/napalm/logs.

CLI usage example:

$ napalm-logs --log-file /var/log/napalm-logs

Configuration file example:

log_file: /var/log/napalm-logs

log-format

The format of the log messages.

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s.

Example: 2017-07-03 11:54:25,300,301 [napalm_logs.listener.tcp][INFO] Stopping listener process

CLI usage example:

$ napalm-logs --log-format '%(asctime)s,%(msecs)03.0f [%(levelname)] %(message)s'

Configuration file example:

log_format: '%(asctime)s,%(msecs)03.0f [%(levelname)] %(message)s'

log-level: WARNING

The level at which to log messages. Possible options are CRITIAL, ERROR,
WARNING, INFO, DEBUG.

Default: WARNING.

CLI usage example:

$ napalm-logs -l debug
$ napalm-logs --log-level info

Configuration file example:

log_level: info

port: 514

The port to use to listen for all incoming syslog messages. This can be
assigned using the CLI argument -p. When working with multiple listeners,
it is recommended to specify the port argument for each listener to avoid
confusions.

Default: 514.

CLI usage example:

code-block:: bash

$ napalm-logs -p 1024
$ napalm-logs –port 1024

Configuration file example:

port: 1024

publisher: zmq

The channel(s) to be used when publishing the structured napalm-logs documents.
Starting with Release 0.4.0 - Codename Crowbar, it is possible to publish the
messages over multiple channels. Each publisher has it’s separate set of
configuration options, for more details see Publisher.

Default: zmq (ZeroMQ)

CLI usage example:

$ napalm-logs --publisher zmq

Configuration file example:

publisher: zmq

Multiple publishers configuration example (file):

New in version 0.4.0.

publisher:
 - zmq:
 address: 1.2.3.4
 port: 1234
 - kafka:
 bootstrap_servers:
 - kk1.brokers.example.org
 - 192.168.0.1
 - 192.168.0.2:5678
 topic: napalm-logs-out
 - http:
 address: https://example.com/webhook

publish-address: 0.0.0.0

The IP address to use to output the processed message. When publishing the
structured napalm-logs documents over multiple transports, it is recommended to
specify the address field per publisher. For more examples, see
publisher: zmq and Publisher.

Default: 0.0.0.0.

CLI usage example:

$ napalm-logs --publish-address 172.17.17.3

Configuration file example:

publish_address: 172.17.17.3

publish-port: 49017

The port to use to output the processes message. When publishing the structured
napalm-logs documents over multiple transports, it is recommended to specify
the port field per publisher. For more examples, see
publisher: zmq and Publisher.

Default: 49017.

CLI usage example:

$ napalm-logs --publish-port 2048

Configuration file example:

publish_port: 2048

serializer: msgpack

The name of the serializer to be used when publishing the napalm-logs
structured documents. When working with multiple publishers it is possible to
control their serialization method individually, using the
serializer: msgpack option.

Default: msgpack

CLI Example:

$ napalm-logs -s json
$ napalm-logs --serializer yaml

Configuration file example:

serializer: json

transport: zmq

The module to use to output the processed message information. For more details,
see Publisher.

Warning

This option is no longer supported as of Release 0.4.0 - Codename Crowbar. Use
publisher: zmq instead.

Default: zmq (ZeroMQ).

CLI usage example:

$ napalm-logs -t kafka
$ napalm-logs --transport kafka

Configuration file example:

transport: kafka

Or:

transport: kafka

Config File Only Options

The options to be used inside of the pluggable modules are not provided via the
command line, they need to be provided in the config file.

device_whitelist

List of platforms to be supported. By default this is an empty list, thus
everything will be accepted. This is useful to control the number of
sub-processes started.

Example:

device_whitelist:
 - junos
 - iosxr

device_blacklist

List of platforms to be ignored. By default this list is empty, thus nothing
will be ignored. This is also useful to control the number of sub-processes
started.

Example:

device_blacklist:
 - eos

Clients

The messages published by napalm-logs can be used in a variety of applications,
as there are no restrictions regarding the channel (see Publisher).

The capabilities are already embedded in well known Frameworks,
or the user can consume the structured messages using custom
Example Scripts.

Frameworks

	Salt

	StackStorm

Example Scripts

For simplicity, the examples below assume that napalm-logs is started using
–disable-security, and
ZeroMQ is used as publisher.

Python

Receive the messages from napalm-logs and print on the command line:

import zmq
import napalm_logs.utils

server_address = '127.0.0.1' # --publish-address
server_port = 49017 # --publish-port

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,
 port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '')

while True:
 raw_object = socket.recv()
 print(napalm_logs.utils.unserialize(raw_object))

JavaScript (Node.js)

Receive the napalm-logs messages into a Node.js app, which only logs on the
console. This assumes zeromq.js [https://github.com/zeromq/zeromq.js/] and
msgpack-lite [https://github.com/kawanet/msgpack-lite] bindings are installed
(npm install zeromq and npm install msgpack-lite).

var zmq = require('zeromq')
var msgpack = require('msgpack-lite');
var sock = zmq.socket('sub');
sock.connect('tcp://127.0.0.1:49017');
sock.subscribe('');
sock.on('message', function(msg){
 var data = msgpack.decode(msg);
 console.log('Received message:');
 console.log(data);
});

Salt

The structured messages published by napalm-logs can be imported into the Salt
event bus using the napalm-logs Engine [https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.napalm_syslog.html] introduced in the 2017.7 release (Nitrogen) [https://docs.saltstack.com/en/latest/topics/releases/2017.7.0.html#network-automation].

Configuration

The address and port fields on the napalm-syslog Salt engine side must
correspond to the values configured for publish-address: 0.0.0.0
and publish-address: 0.0.0.0 on the napalm-logs side.
Similarly, auth_address, auth_port, certificate, and transport
would have the values specified for auth-address
and auth-port,
certificate, and
transport: zmq.

Note

Do not conflate the address and the port arguments on the napalm-logs
side with address and port napalm-syslog Salt Engine fields: they are
not the same!

For more configuration options and usage examples of the napalm-syslog Salt
Egine, please check the documentation [https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.napalm_syslog.html].

Configuration example:

When the napalm-logs engine is started usign the command line $ napalm-logs -a 1.2.3.4 -p 1234 --publish-address 5.6.7.8 --publish-port 5678 --disable-security,
or using the configuration file:

address: 1.2.3.4
port: 1234
publish_address: 5.6.7.8
publish_port: 5678
disable_security: true

The napalm-syslog engine is configured under the Salt Master or Minion:

engines:
 - napalm_syslog:
 transport: zmq
 address: 5.6.7.8
 port: 5678
 disable_security: true

StackStorm

Structured Messages

Each message has a certain identification tag which is unique and cross-platform.

For example, the following syslog message:

<28>Jul 4 13:40:55 vmx2 rpd[2942]: BGP_PREFIX_LIMIT_EXCEEDED: 10.0.0.31 (Internal AS 65001): Configured maximum prefix-limit(1) exceeded for inet-unicast nlri: 7 (instance master)

napalm-logs identifies that it was produced by a Junos device and assigns
the error tag BGP_PREFIX_LIMIT_EXCEEDED and then will try to map the
information into the OpenConfig model openconfig_bgp:

{
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "peer_as": "65001"
 },
 "afi_safis": {
 "afi_safi": {
 "inet4": {
 "state": {
 "prefixes": {
 "received": "141"
 }
 },
 "ipv4_unicast": {
 "prefix_limit": {
 "state": {
 "max_prefixes": "140"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "message_details": {
 "processId": "2902",
 "hostPrefix": null,
 "pri": "149",
 "processName": "rpd",
 "host": "vmx01",
 "tag": "BGP_PREFIX_THRESH_EXCEEDED",
 "time": "14:03:12",
 "date": "Jun 21",
 "message": "192.168.140.254 (External AS 65001): Configured maximum prefix-limit threshold(140) exceeded for inet4-unicast nlri: 141 (instance master)"
 },
 "timestamp": 1498050192,
 "facility": 18,
 "ip": "127.0.0.1",
 "host": "vmx01",
 "yang_model": "openconfig_bgp",
 "error": "BGP_PREFIX_THRESH_EXCEEDED",
 "os": "junos",
 "severity": 5
}

Under this section, we present the possible error tags, together with their
corresponding YANG model and examples.

	BGP_MD5_INCORRECT

	BGP_NEIGHBOR_STATE_CHANGED

	BGP_PEER_NOT_CONFIGURED

	BGP_PREFIX_LIMIT_EXCEEDED

	BGP_PREFIX_THRESH_EXCEEDED

	BGP_SESSION_NOT_CONFIGURED

	BPDU_BLOCK_INTERFACE_DISABLED

	CONFIGURATION_COMMIT_COMPLETED

	CONFIGURATION_COMMIT_REQUESTED

	CONFIGURATION_ERROR

	CONFIGURATION_ROLLBACK

	INTERFACE_DOWN

	INTERFACE_MAC_LIMIT_REACHED

	INTERFACE_UP

	ISIS_NEIGHBOR_DOWN

	ISIS_NEIGHBOR_UP

	NTP_SERVER_UNREACHABLE

	OSPF_NEIGHBOR_DOWN

	OSPF_NEIGHBOR_UP

	RAW

	SYSTEM_ALARM

	UNKNOWN

	USER_ENTER_CONFIG_MODE

	USER_LOGIN

BGP_MD5_INCORRECT

This error tag corresponds to syslog messages notifying that the authentication for a BGP neighbor is incorrect.

Maps to the openconfig-bgp YANG model.

Implemented for

	junos

Syslog message example

<4>Jul 20 21:23:00 vmx01 /kernel: tcp_auth_ok: Packet from 192.168.140.254:61664 wrong MD5 digest

Structured message example

{
 "error": "BGP_MD5_INCORRECT",
 "facility": 0,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 20",
 "facility": 0,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "Packet from 192.168.140.254:61664 wrong MD5 digest",
 "pri": "4",
 "processId": null,
 "processName": "kernel",
 "severity": 4,
 "tag": "tcp_auth_ok",
 "time": "21:23:00"
 },
 "os": "junos",
 "severity": 4,
 "timestamp": 1500585780,
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "session_state": "CONNECT"
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-bgp"
}

BGP_NEIGHBOR_STATE_CHANGED

This error tag corresponds to syslog messages notifying that the configured bgp neighbor has changed state

Maps to the openconfig-bgp YANG model.

Implemented for

	junos

Syslog message example

<28>Jun 21 14:03:12 vmx01 rpd[2902]: RPD_BGP_NEIGHBOR_STATE_CHANGED: BGP peer 1.1.1.1 (External AS 2222) changed state from Connect to Idle (event Stop) (instance master)

Structured message example

{
 "error": "BGP_NEIGHBOR_STATE_CHANGED",
 "facility": 3,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jun 21",
 "facility": 3,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "BGP peer 1.1.1.1 (External AS 2222) changed state from Connect to Idle (event Stop) (instance master)",
 "pri": "28",
 "processId": "2902",
 "processName": "rpd",
 "severity": 4,
 "tag": "RPD_BGP_NEIGHBOR_STATE_CHANGED",
 "time": "14:03:12"
 },
 "os": "junos",
 "severity": 4,
 "timestamp": 1498053792,
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "1.1.1.1": {
 "state": {
 "peer_as": "2222",
 "session-state": "IDLE",
 "session-state-change-event": "Stop",
 "session-state-old": "CONNECT"
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-bgp"
}

BGP_PEER_NOT_CONFIGURED

This error tag corresponds to syslog messages notifying that the configured peer sent a BGP notification code 6 subcode 5, which idicates that the peer does not have the session configured.

Maps to the openconfig-bgp YANG model.

Implemented for

	junos

Syslog message example

<87>Jul 5 05:52:44 vmx01 rpd[1848]: bgp_read_message:2764: NOTIFICATION received from 1.2.3.4 (External AS 1234): code 6 (Cease) subcode 5 (Connection Rejected)

Structured message example

{
 "error": "BGP_PEER_NOT_CONFIGURED",
 "facility": 10,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 5",
 "facility": 10,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "2764: NOTIFICATION received from 1.2.3.4 (External AS 1234): code 6 (Cease) subcode 5 (Connection Rejected)",
 "pri": "87",
 "processId": "1848",
 "processName": "rpd",
 "severity": 7,
 "tag": "bgp_read_message",
 "time": "05:52:44"
 },
 "os": "junos",
 "severity": 7,
 "timestamp": 1499233964,
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "1.2.3.4": {
 "state": {
 "peer_as": "1234",
 "session_state": "ACTIVE"
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-bgp"
}

BGP_PREFIX_LIMIT_EXCEEDED

This error tag corresponds to syslog messages notifying that the prefix limit for a BGP neighbor has been exceeded, without tearing it down.

Maps to the openconfig-bgp YANG model.

Implemented for

	eos

	junos

Syslog message example

<149>Apr 16 11:04:17 edge01 Rib: %BGP-3-NOTIFICATION: received from neighbor 194.53.172.97 (AS 2611) 6/1 (Cease/maximum number of prefixes reached) 0 bytes

Structured message example

{
 "error": "BGP_PREFIX_LIMIT_EXCEEDED",
 "facility": 18,
 "host": "edge01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Apr 16",
 "facility": 18,
 "host": "edge01",
 "message": ": received from neighbor 194.53.172.97 (AS 2611) 6/1 (Cease/maximum number of prefixes reached) 0 bytes",
 "pri": "149",
 "processName": "Rib",
 "severity": 5,
 "tag": "BGP-3-NOTIFICATION",
 "time": "11:04:17"
 },
 "os": "eos",
 "severity": 5,
 "timestamp": 1492340657,
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "194.53.172.97": {
 "state": {
 "peer_as": "2611",
 "session_state": "IDLE"
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-bgp"
}

BGP_PREFIX_THRESH_EXCEEDED

This error tag corresponds to syslog messages notifying that the prefix limit threshhold for a BGP neighbor has been exceeded and the neighbor has been torn down.

Maps to the openconfig-bgp YANG model.

Implemented for

	junos

	iosxr

Syslog message example

<149>Jun 21 14:03:12 vmx01 rpd[2902]: BGP_PREFIX_THRESH_EXCEEDED: 192.168.140.254 (External AS 4230): Configured maximum prefix-limit threshold(140) exceeded for inet4-unicast nlri: 141 (instance master)

Structured message example

{
 "error": "BGP_PREFIX_THRESH_EXCEEDED",
 "facility": 18,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jun 21",
 "facility": 18,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "192.168.140.254 (External AS 4230): Configured maximum prefix-limit threshold(140) exceeded for inet4-unicast nlri: 141 (instance master)",
 "pri": "149",
 "processId": "2902",
 "processName": "rpd",
 "severity": 5,
 "tag": "BGP_PREFIX_THRESH_EXCEEDED",
 "time": "14:03:12"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1498053792,
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "afi_safis": {
 "afi_safi": {
 "inet4": {
 "ipv4_unicast": {
 "prefix_limit": {
 "state": {
 "max_prefixes": 140
 }
 }
 },
 "state": {
 "prefixes": {
 "received": 141
 }
 }
 }
 }
 },
 "state": {
 "peer_as": "4230"
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-bgp"
}

BGP_SESSION_NOT_CONFIGURED

This error tag corresponds to syslog messages notifying that this router sent a BGP notification code 6 subcode 5 to another router, which idicates that the peer is trying to esablish a session, but this router does not have the session configured.

Maps to the openconfig-bgp YANG model.

Implemented for

	junos

Syslog message example

<28>Nov 20 16:58:04 re0-gw2.fin1 rpd[3167]: bgp_listen_accept:4984: NOTIFICATION sent to 2001:e8:124::f1:12:1+51528 (proto): code 6 (Cease) subcode 5 (Connection Rejected), Reason: Connection attempt from unconfigured neighbor: 2001:e8:124::f1:12:1+51528

Structured message example

{
 "error": "BGP_SESSION_NOT_CONFIGURED",
 "facility": 3,
 "host": "gw2.fin1",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Nov 20",
 "facility": 3,
 "host": "gw2.fin1",
 "hostPrefix": "re0-",
 "message": "4984: NOTIFICATION sent to 2001:e8:124::f1:12:1+51528 (proto): code 6 (Cease) subcode 5 (Connection Rejected), Reason: Connection attempt from unconfigured neighbor: 2001:e8:124::f1:12:1+51528",
 "pri": "28",
 "processId": "3167",
 "processName": "rpd",
 "severity": 4,
 "tag": "bgp_listen_accept",
 "time": "16:58:04"
 },
 "os": "junos",
 "severity": 4,
 "timestamp": 1511197084,
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "2001:e8:124::f1:12:1": {
 "state": {
 "session_state": "IDLE"
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-bgp"
}

BPDU_BLOCK_INTERFACE_DISABLED

This error tag corresponds to syslog messages notifying that the configured interface has been disabled due to a bpdu block

Maps to the openconfig-interface YANG model.

Implemented for

	junos

Syslog message example

<25>Jun 21 14:03:12 vmx01 eswd[2902]: ESWD_BPDU_BLOCK_ERROR_DISABLED: ge-0/0/17.0: bpdu-block disabled port

Structured message example

{
 "error": "BPDU_BLOCK_INTERFACE_DISABLED",
 "facility": 3,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jun 21",
 "facility": 3,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "ge-0/0/17.0: bpdu-block disabled port",
 "pri": "25",
 "processId": "2902",
 "processName": "eswd",
 "severity": 1,
 "tag": "ESWD_BPDU_BLOCK_ERROR_DISABLED",
 "time": "14:03:12"
 },
 "os": "junos",
 "severity": 1,
 "timestamp": 1498053792,
 "yang_message": {
 "interfaces": {
 "interface": {
 "ge-0/0/17.0": {
 "state": {
 "oper_status": "DOWN"
 }
 }
 }
 }
 },
 "yang_model": "openconfig-interface"
}

CONFIGURATION_COMMIT_COMPLETED

This error tag corresponds to syslog messages notifying that the a configuration commit is complete

There is no YANG model available yet to map this class of messages.
Please check the Structured message example section to see the structure.

Implemented for

	junos

	iosxr

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_COMMIT_COMPLETED: commit complete

Structured message example

{
 "error": "CONFIGURATION_COMMIT_COMPLETED",
 "facility": 23,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 20",
 "facility": 23,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "commit complete",
 "pri": "189",
 "processId": "7729",
 "processName": "mgd",
 "severity": 5,
 "tag": "UI_COMMIT_COMPLETED",
 "time": "21:44:00"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1500587040,
 "yang_message": {
 "system": {
 "operations": {
 "commit_complete": true
 }
 }
 },
 "yang_model": "NO_MODEL"
}

CONFIGURATION_COMMIT_REQUESTED

This error tag corresponds to syslog messages notifying that the a user has requested a configuration commit

There is no YANG model available yet to map this class of messages.
Please check the Structured message example section to see the structure.

Implemented for

	junos

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_COMMIT: User 'luke' requested 'commit' operation (comment: hello)

Structured message example

{
 "error": "CONFIGURATION_COMMIT_REQUESTED",
 "facility": 23,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 20",
 "facility": 23,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "User 'luke' requested 'commit' operation (comment: hello)",
 "pri": "189",
 "processId": "7729",
 "processName": "mgd",
 "severity": 5,
 "tag": "UI_COMMIT",
 "time": "21:44:00"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1500587040,
 "yang_message": {
 "users": {
 "user": {
 "luke": {
 "action": {
 "comment": "hello",
 "requested_commit": true
 }
 }
 }
 }
 },
 "yang_model": "NO_MODEL"
}

CONFIGURATION_ERROR

This error tag corresponds to syslog messages notifying that there is an error in the configuration

There is no YANG model available yet to map this class of messages.
Please check the Structured message example section to see the structure.

Implemented for

	junos

Syslog message example

<187>Jul 20 21:44:00 vmx01 mgd[7729]: UI_CONFIGURATION_ERROR: Process: mgd, path: [edit vlans VLANTEST l3-interface], statement: l3-interface vlan.666, Interface must already be defined under [edit interfaces]

Structured message example

{
 "error": "CONFIGURATION_ERROR",
 "facility": 23,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 20",
 "facility": 23,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "Process: mgd, path: [edit vlans VLANTEST l3-interface], statement: l3-interface vlan.666, Interface must already be defined under [edit interfaces]",
 "pri": "187",
 "processId": "7729",
 "processName": "mgd",
 "severity": 3,
 "tag": "UI_CONFIGURATION_ERROR",
 "time": "21:44:00"
 },
 "os": "junos",
 "severity": 3,
 "timestamp": 1500587040,
 "yang_message": {
 "system": {
 "configuration": {
 "error": true,
 "message": "Interface must already be defined under [edit interfaces]",
 "path": "[edit vlans VLANTEST l3-interface]",
 "statement": "l3-interface vlan.666"
 }
 }
 },
 "yang_model": "NO_MODEL"
}

CONFIGURATION_ROLLBACK

This error tag corresponds to syslog messages notifying that the a user has requested a configuration rollback

There is no YANG model available yet to map this class of messages.
Please check the Structured message example section to see the structure.

Implemented for

	junos

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_LOAD_EVENT: User 'luke' is performing a 'rollback'

Structured message example

{
 "error": "CONFIGURATION_ROLLBACK",
 "facility": 23,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 20",
 "facility": 23,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "User 'luke' is performing a 'rollback'",
 "pri": "189",
 "processId": "7729",
 "processName": "mgd",
 "severity": 5,
 "tag": "UI_LOAD_EVENT",
 "time": "21:44:00"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1500587040,
 "yang_message": {
 "users": {
 "user": {
 "luke": {
 "action": {
 "configuration_rollback": true
 }
 }
 }
 }
 },
 "yang_model": "NO_MODEL"
}

INTERFACE_DOWN

Maps to the openconfig-interfaces YANG model.

Implemented for

	eos

	junos

	iosxr

Syslog message example

<165>Feb 6 09:42:36 veos01 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet28, changed state to down

Structured message example

{
 "error": "INTERFACE_DOWN",
 "facility": 20,
 "host": "veos01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Feb 6",
 "facility": 20,
 "host": "veos01",
 "message": ": Line protocol on Interface Ethernet28, changed state to down",
 "pri": "165",
 "processName": "Ebra",
 "severity": 5,
 "tag": "LINEPROTO-5-UPDOWN",
 "time": "09:42:36"
 },
 "os": "eos",
 "severity": 5,
 "timestamp": 1517910156,
 "yang_message": {
 "interfaces": {
 "interface": {
 "Ethernet28": {
 "state": {
 "oper_status": "DOWN"
 }
 }
 }
 }
 },
 "yang_model": "openconfig-interfaces"
}

INTERFACE_MAC_LIMIT_REACHED

This error tag corresponds to syslog messages notifying that the configured interface mac learning limit has been reached

Maps to the openconfig-interface YANG model.

Implemented for

	junos

Syslog message example

<149>Jun 21 14:03:12 vmx01 l2ald[2902]: L2ALD_MAC_LIMIT_REACHED_IF: Limit on learned MAC addresses reached for ge-1/0/23.0; current count is 3

Structured message example

{
 "error": "INTERFACE_MAC_LIMIT_REACHED",
 "facility": 18,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jun 21",
 "facility": 18,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "Limit on learned MAC addresses reached for ge-1/0/23.0; current count is 3",
 "pri": "149",
 "processId": "2902",
 "processName": "l2ald",
 "severity": 5,
 "tag": "L2ALD_MAC_LIMIT_REACHED_IF",
 "time": "14:03:12"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1498053792,
 "yang_message": {
 "interfaces": {
 "interface": {
 "ge-1/0/23.0": {
 "ethernet": {
 "state": {
 "learned-mac-addresses": "3"
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-interface"
}

INTERFACE_UP

Maps to the openconfig-interfaces YANG model.

Implemented for

	eos

	iosxr

Syslog message example

<165>Feb 6 08:27:14 veos01 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet28, changed state to up

Structured message example

{
 "error": "INTERFACE_UP",
 "facility": 20,
 "host": "veos01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Feb 6",
 "facility": 20,
 "host": "veos01",
 "message": ": Line protocol on Interface Ethernet28, changed state to up",
 "pri": "165",
 "processName": "Ebra",
 "severity": 5,
 "tag": "LINEPROTO-5-UPDOWN",
 "time": "08:27:14"
 },
 "os": "eos",
 "severity": 5,
 "timestamp": 1517905634,
 "yang_message": {
 "interfaces": {
 "interface": {
 "Ethernet28": {
 "state": {
 "oper_status": "UP"
 }
 }
 }
 }
 },
 "yang_model": "openconfig-interfaces"
}

ISIS_NEIGHBOR_DOWN

Maps to the openconfig-isis YANG model.

Implemented for

	iosxr

Syslog message example

<190>12345: gw1.acy1 RP/0/RSP0/CPU0:Nov 1 11:11:24.927: isis[1006]: %ROUTING-ISIS-5-ADJCHANGE : Adjacency to gw1.nyc1 (TenGigE1/2/0/8.92) (L2) Down, Interface state down

Structured message example

{
 "error": "ISIS_NEIGHBOR_DOWN",
 "facility": 23,
 "host": "gw1.acy1",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Nov 1",
 "facility": 23,
 "host": "gw1.acy1",
 "message": "Adjacency to gw1.nyc1 (TenGigE1/2/0/8.92) (L2) Down, Interface state down",
 "messageId": "12345",
 "milliseconds": ".927",
 "nodeId": "RP/0/RSP0/CPU0",
 "pri": "190",
 "processId": "1006",
 "processName": "isis",
 "severity": 6,
 "tag": "ROUTING-ISIS-5-ADJCHANGE",
 "time": "11:11:24",
 "timeZone": null
 },
 "os": "iosxr",
 "severity": 6,
 "timestamp": 1509534684,
 "yang_message": {
 "network-instances": {
 "network-instance": {
 "global": {
 "protocols": {
 "protocol": {
 "isis": {
 "interfaces": {
 "interface": {
 "TenGigE1/2/0/8.92": {
 "levels": {
 "level": {
 "L2": {
 "adjacencies": {
 "adjacency": {
 "gw1.nyc1": {
 "state": {
 "adjacency-state": "DOWN",
 "adjacency-state-change-reason-message": "Interface state down"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-isis"
}

ISIS_NEIGHBOR_UP

Maps to the openconfig-isis YANG model.

Implemented for

	iosxr

Syslog message example

<190>12345: gw3.frc1 RP/0/RSP0/CPU0:Nov 1 01:17:24.927: isis[1006]: %ROUTING-ISIS-5-ADJCHANGE : Adjacency to gw3.lax1 (TenGigE0/2/0/8.995) (L2) Up, New adjacency

Structured message example

{
 "error": "ISIS_NEIGHBOR_UP",
 "facility": 23,
 "host": "gw3.frc1",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Nov 1",
 "facility": 23,
 "host": "gw3.frc1",
 "message": "Adjacency to gw3.lax1 (TenGigE0/2/0/8.995) (L2) Up, New adjacency",
 "messageId": "12345",
 "milliseconds": ".927",
 "nodeId": "RP/0/RSP0/CPU0",
 "pri": "190",
 "processId": "1006",
 "processName": "isis",
 "severity": 6,
 "tag": "ROUTING-ISIS-5-ADJCHANGE",
 "time": "01:17:24",
 "timeZone": null
 },
 "os": "iosxr",
 "severity": 6,
 "timestamp": 1509499044,
 "yang_message": {
 "network-instances": {
 "network-instance": {
 "global": {
 "protocols": {
 "protocol": {
 "isis": {
 "interfaces": {
 "interface": {
 "TenGigE0/2/0/8.995": {
 "levels": {
 "level": {
 "L2": {
 "adjacencies": {
 "adjacency": {
 "gw3.lax1": {
 "state": {
 "adjacency-state": "UP",
 "adjacency-state-change-reason-message": "New adjacency"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-isis"
}

NTP_SERVER_UNREACHABLE

This message is sent when the synchronization is lost with an NTP server. According to the openconfig-system YANG model, the distinction between NTP peers and servers is made via the association-type field from the config container.

Maps to the openconfig-system YANG model.

Implemented for

	junos

	iosxr

Syslog message example

<99>Jul 13 22:53:14 re0.edge01.bjm01 xntpd[16015]: NTP Server 1.2.3.4 is Unreachable

Structured message example

{
 "error": "NTP_SERVER_UNREACHABLE",
 "facility": 12,
 "host": "edge01.bjm01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 13",
 "facility": 12,
 "host": "edge01.bjm01",
 "hostPrefix": "re0.",
 "message": "NTP Server 1.2.3.4 is Unreachable",
 "pri": "99",
 "processId": "16015",
 "severity": 3,
 "tag": "xntpd",
 "time": "22:53:14"
 },
 "os": "junos",
 "severity": 3,
 "timestamp": 1499986394,
 "yang_message": {
 "system": {
 "ntp": {
 "servers": {
 "server": {
 "1.2.3.4": {
 "state": {
 "association-type": "SERVER",
 "stratum": 16
 }
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-system"
}

OSPF_NEIGHBOR_DOWN

This error tag corresponds to syslog messages notifying that the configured ospf neighbor has changed state from Full

Maps to the openconfig-ospf YANG model.

Implemented for

	junos

Syslog message example

<29>Jun 21 14:03:12 vmx01 rpd[2902]: RPD_OSPF_NBRDOWN: OSPF neighbor 1.1.1.1 (realm ospf-v2 ge-0/0/0.0 area 0.0.0.0) state changed from Full to Down due to InActiveTimer (event reason: BFD session timed out and neighbor was declared dead)

Structured message example

{
 "error": "OSPF_NEIGHBOR_DOWN",
 "facility": 3,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jun 21",
 "facility": 3,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "OSPF neighbor 1.1.1.1 (realm ospf-v2 ge-0/0/0.0 area 0.0.0.0) state changed from Full to Down due to InActiveTimer (event reason: BFD session timed out and neighbor was declared dead)",
 "pri": "29",
 "processId": "2902",
 "processName": "rpd",
 "severity": 5,
 "tag": "RPD_OSPF_NBRDOWN",
 "time": "14:03:12"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1498053792,
 "yang_message": {
 "network-instances": {
 "network-instance": {
 "global": {
 "protocols": {
 "protocol": {
 "ospf": {
 "ospfv2": {
 "areas": {
 "area": {
 "0.0.0.0": {
 "interfaces": {
 "interface": {
 "ge-0/0/0.0": {
 "neighbors": {
 "neighbor": {
 "1.1.1.1": {
 "state": {
 "adjacency-state": "DOWN",
 "adjacency-state-change-reason": "INACTIVE_TIMER",
 "adjacency-state-change-reason-message": "BFD session timed out and neighbor was declared dead"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-ospf"
}

OSPF_NEIGHBOR_UP

This error tag corresponds to syslog messages notifying that the configured ospf neighbor has changed to a higher state

Maps to the openconfig-ospf YANG model.

Implemented for

	junos

Syslog message example

<29>Jun 21 14:03:12 vmx01 rpd[2902]: RPD_OSPF_NBRUP: OSPF neighbor 1.1.1.1 (realm ospf-v2 ge-0/0/0.0 area 0.0.0.0) state changed from Init to ExStart due to 2WayRcvd (event reason: exchange start)

Structured message example

{
 "error": "OSPF_NEIGHBOR_UP",
 "facility": 3,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jun 21",
 "facility": 3,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "OSPF neighbor 1.1.1.1 (realm ospf-v2 ge-0/0/0.0 area 0.0.0.0) state changed from Init to ExStart due to 2WayRcvd (event reason: exchange start)",
 "pri": "29",
 "processId": "2902",
 "processName": "rpd",
 "severity": 5,
 "tag": "RPD_OSPF_NBRUP",
 "time": "14:03:12"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1498053792,
 "yang_message": {
 "network-instances": {
 "network-instance": {
 "global": {
 "protocols": {
 "protocol": {
 "ospf": {
 "ospfv2": {
 "areas": {
 "area": {
 "0.0.0.0": {
 "interfaces": {
 "interface": {
 "ge-0/0/0.0": {
 "neighbors": {
 "neighbor": {
 "1.1.1.1": {
 "state": {
 "adjacency-state": "EXCHANGE_START",
 "adjacency-state-change-reason": "TWO_WAY_RECEIVED",
 "adjacency-state-change-reason-message": "exchange start"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-ospf"
}

RAW

This error tag is sent when napalm-logs was able to identify the operating
system, but there was no tag matching the syslog message. Therefore, the
output object will contain the syslog message parts, without further processing.
By default, these messages are not published; they need to be explicitly
enabled using the send_raw: False option for the publisher.

Note

These messages are not recommended for production use.
They can be used as temporary helpers, at most.
The right approach is appending a new message matcher inside the
corresponding device profile. See Device Profiles.

Note

The syslog message parts under the message_details key are device-specific,
as designed inside the profiler.

Example:

{
 "message_details": {
 "processId": null,
 "hostPrefix": null,
 "pri": "37",
 "processName": "sshd",
 "host": "vmx1",
 "tag": "SSHD_LOGIN_FAILED",
 "time": "10:32:03",
 "date": "Jul 10",
 "message": "Login failed for user 'root' from host '61.177.172.56'"
 },
 "ip": "172.17.17.1",
 "host": "vmx1",
 "timestamp": 1499682723,
 "os": "junos",
 "model_name": "raw",
 "error": "RAW",
 "facility": 4,
 "severity": 5
}

SYSTEM_ALARM

This error tag corresponds to syslog messages notifying that there has been a change in status for an alarm. There are multiple entries for this error. The reason being that the exact component name can be contained in the reason section, so has to be extracted via a specific regex.

Maps to the ietf-hardware YANG model.

Implemented for

	junos

Syslog message example

<28>Jul 8 23:04:13 vmx01 alarmd[2449]: Alarm set: Pwr supply color=YELLOW, class=CHASSIS, reason=PEM 1 Fan Failed

Structured message example

{
 "error": "SYSTEM_ALARM",
 "facility": 3,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 8",
 "facility": 3,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "Pwr supply color=YELLOW, class=CHASSIS, reason=PEM 1 Fan Failed",
 "pri": "28",
 "processId": "2449",
 "processName": "alarmd",
 "severity": 4,
 "tag": "Alarm set",
 "time": "23:04:13"
 },
 "os": "junos",
 "severity": 4,
 "timestamp": 1499555053,
 "yang_message": {
 "hardware-state": {
 "component": {
 "supply": {
 "class": "CHASSIS",
 "name": "supply",
 "state": {
 "alarm-reason": "PEM 1 Fan Failed",
 "alarm-state": 4
 }
 }
 }
 }
 },
 "yang_model": "ietf-hardware"
}

UNKNOWN

This error tag is sent when napalm-logs was unable to identify the operating
system. By default, these messages are not published; they need to be explicitly
enabled using the send_unknown: False option for the publisher.

Note

These messages are not recommended for production use.
They can be used as temporary helpers, at most.
The right approach is writing a new device profile matching the syslog message
and generating the structured messages as required. See Device Profiles.

Example:

{
 "message_details": {
 "message": "<28>Jul 10 10:32:00 vmx1 inetd[2397]: /usr/sbin/sshd[89736]: exited, status 255\n"
 },
 "timestamp": 1501685287,
 "ip": "127.0.0.1",
 "host": "unknown",
 "error": "UNKNOWN",
 "os": "unknown",
 "model_name": "unknown"
}

USER_ENTER_CONFIG_MODE

There is no YANG model available yet to map this class of messages.
Please check the Structured message example section to see the structure.

Implemented for

	junos

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_DBASE_LOGIN_EVENT: User 'luke' entering configuration mode

Structured message example

{
 "error": "USER_ENTER_CONFIG_MODE",
 "facility": 23,
 "host": "vmx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "Jul 20",
 "facility": 23,
 "host": "vmx01",
 "hostPrefix": null,
 "message": "User 'luke' entering configuration mode",
 "pri": "189",
 "processId": "7729",
 "processName": "mgd",
 "severity": 5,
 "tag": "UI_DBASE_LOGIN_EVENT",
 "time": "21:44:00"
 },
 "os": "junos",
 "severity": 5,
 "timestamp": 1500587040,
 "yang_message": {
 "users": {
 "user": {
 "luke": {
 "action": {
 "enter_config_mode": true
 }
 }
 }
 }
 },
 "yang_model": "NO_MODEL"
}

USER_LOGIN

Match messages AUTHPRIV-6-SYSTEM_MSG from NX-OS.

Message example:

sw01.bjm01: 2017 Jul 26 14:42:46 UTC: %AUTHPRIV-6-SYSTEM_MSG: pam_unix(dcos_sshd:session): session opened for user luke by (uid=0) - dcos_sshd[12977] # noqa

Output example:

{
 "users": {
 "user": {
 "luke": {
 "action": {
 "login": true
 },
 "uid": 0
 }
 }
 }
}

There is no YANG model available yet to map this class of messages.
Please check the Structured message example section to see the structure.

Implemented for

	nxos

Syslog message example

<190>sw01.pdx01: 2017 Jul 28 14:42:46 UTC: %AUTHPRIV-6-SYSTEM_MSG: pam_unix(dcos_sshd:session): session opened for user luke by (uid=0) - dcos_sshd[12977]

Structured message example

{
 "error": "USER_LOGIN",
 "facility": 23,
 "host": "sw01.pdx01",
 "ip": "127.0.0.1",
 "message_details": {
 "date": "2017 Jul 28",
 "facility": 23,
 "host": "sw01.pdx01",
 "message": "pam_unix(dcos_sshd:session): session opened for user luke by (uid=0) - dcos_sshd[12977]",
 "pri": "190",
 "severity": 6,
 "tag": "AUTHPRIV-6-SYSTEM_MSG",
 "time": "14:42:46",
 "timeZone": "UTC"
 },
 "os": "nxos",
 "severity": 6,
 "timestamp": 1501252966,
 "yang_message": {
 "users": {
 "user": {
 "luke": {
 "action": {
 "login": true
 },
 "uid": 0
 }
 }
 }
 },
 "yang_model": "NO_MODEL"
}

Client Authentication

With the event-driven automation in mind, napalm-logs has been designed to be
safe and securely publish the outgoing messages. As these messages may trigger
automatic configurationc changes, or simply notifications, we must ensure their
authenticity. For these reasons, napalm-logs encrypts and signs the outgoing
messages.

Although highly discouraged, the user has the possibility to disable the
security at their own risk.

Whether the security is enabled or disabled, the messages published are binary
serialized using MessagePack [http://msgpack.org/].

The clients that connect to the publisher interface (see Publisher), have
to retrieve the encryption and the signing key from the napalm-logs daemon.
In the core architecture of napalm-logs, when the security is not turned
off, another separate process is started, which listens to connections and
exchanges the keys with the client. The exchange is realised over a secure SSL
socket, using the certificate and the key configured when starting the daemon
(see certificate and
keyfile).
The authentication subsystem listens on a socket, whose configuration details
can be set using the auth-address and
auth-port options (either from the CLI, or in the
configuration file).

The client, before being able to decrypt the messages received from the
napalm-logs publisher, must receive the keys from the authenticator sub-system.

In order to ease the authentication process on the client side, we have included
a couple of helpers, making the key exchange and decryption easy:

#!/usr/bin/env python

import zmq # when using the ZeroMQ publisher
import napalm_logs.utils

server_address = '127.0.0.1' # IP
server_port = 49017 # Port for the napalm-logs publisher interface
auth_address = '127.0.0.1' # IP
auth_port = 49018 # Port for the authentication interface

certificate = '/var/cache/napalm-logs.crt' # This is the server crt generated earlier

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,
 port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '') # subscribe to the napalm-logs publisher

auth = napalm_logs.utils.ClientAuth(certificate,
 address=auth_address,
 port=auth_port) # authenticate to napalm-logs

while True:
 raw_object = socket.recv() # receive the encrypted object
 decrypted = auth.decrypt(raw_object) # check the siganture, decrypt and deserialize
 print(decrypted)

When the security is disabled, the clients no longer need to authenticate and
receive the keys, however they need to bear in mind to deserialize the messages.
We have also included a helper for that: napalm_logs.utils.unserialize, see
the example below:

#!/usr/bin/env python

import zmq # when using the ZeroMQ publisher
import napalm_logs.utils

server_address = '127.0.0.1' # IP
server_port = 49017 # Port for the napalm-logs publisher interface

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,
 port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '') # subscribe to the napalm-logs publisher

while True:
 raw_object = socket.recv() # binary object
 print(napalm_logs.utils.unserialize(raw_object)) # deserialize

Listener

The Listener subsystem is a pluggable interface for inbound unstructured syslog
messages. The messages can be received directly from the network devices, via
UDP or TCP, or from other third parties, such as brokers, e.g. ZeroMQ, Kafka,
etc., depending on the architecture of the network. The default listener is UDP.

From the command line, the Listener can be selected using the --listener
option, e.g.:

$ napalm-logs --listener tcp

From the configuration file, the Listener can be specified using the listener
option, eventually with several options. The options depend on the
nature of the Listener.

Example: listener configuration using the default configuration

listener: tcp

Example: listener configuration using custom options

listener:
 tcp:
 buffer_size: 2048
 max_clients: 100

Note

The IP Address / port for the Listener be specified using the
address and port: 514
configuration options.

Multiple listeners

New in version 0.4.0.

It is possible to start multiple listeners, each with its separate set of
configuration options, however this feature is available only from the
configuration file, e.g.:

listener:
 - tcp:
 address: 1.2.3.4
 port: 1234
 buffer_size: 2048
 max_clients: 100
 - udp:
 address: 5.6.7.8
 port: 5678

Available listeners and their options

	UDP

	TCP

	Kafka

	ZeroMQ

UDP

Receive the unstructured syslog messages over UDP.

Available options:

buffer_size: 1024

The socket buffer size, in bytes.

Example:

listener:
 udp:
 buffer_size: 2048

TCP

Receive the unstructured syslog messages over TCP.

Available options:

buffer_size: 1024

The socket buffer size, in bytes.

Example:

listener:
 tcp:
 buffer_size: 2048

socket_timeout: 60

The socket timeout, in seconds.

Example:

listener:
 tcp:
 socket_timeout: 5

max_clients: 5

The maximum number of parallel connections to accept.

Example:

listener:
 tcp:
 max_clients: 100

Kafka

Receive unstructured syslog messages from Apache Kafka.

Available options:

bootstrap_servers

host[:port] string (or list of host[:port] strings) that the consumer
should contact to bootstrap initial cluster metadata. This does not have to be
the full node list. It just needs to have at least one broker that will respond
to a Metadata API Request.

Example:

listener:
 kafka:
 bootstrap_servers:
 - kk1.brokers.example.org
 - kk1.brokers.example.org:1234
 - 192.168.0.1
 - 192.168.0.2:5678

listener:
 kafka:
 bootstrap_servers: kk1.brokers.example.org:1234

group_id: napalm-logs

The bootstrap servers group ID name.

Example:

listener:
 kafka:
 group_id: napalm-logs-servers

topic: syslog.net

The topic to subscribe to and receive messages from.

Example:

listener:
 kafka:
 topic: napalm-logs-in

ZeroMQ

New in version 0.3.0.

Receive unstructured syslog messages via ZeroMQ.

While this listener can be used without any extensive knowledge, we recommend
reading the ZeroMQ guide [http://zguide.zeromq.org/page:all] for advanced
tunning, especially when the messages are transported over networks with
misbehaving firewalls.

Available options:

hwm

Set the high water mark for inbound messages. This option will configure the
ZeroMQ option ZMQ_RCVHWM. This option controls the message queue size.
Read this document [http://api.zeromq.org/4-1:zmq-setsockopt] for more details.

Example:

listener:
 zmq:
 hwm: 0

keepalive: 1

Override SO_KEEPALIVE socket option.
By default, the client will try to maintain the connection alive.

Example:

listener:
 zmq:
 keepalive: 1

keepalive_idle: 300

Override TCP_KEEPALIVE socket option (where supported by OS).
The value is specified in miliseconds.

Example:

listener:
 zmq:
 keepalive_idle: 500

keepalive_interval: -1

Override TCP_KEEPINTVL socket option(where supported by OS).
The value is specified in miliseconds.

Example:

listener:
 zmq:
 keepalive_interval: 300

timeout

Maximum wait time (in miliseconds) to receive a message. By default does not
time out, and the listener will block waiting for a new message to arrive.

Example:

listener:
 zmq:
 timeout: 5000

protocol: tcp

The protocol to be used for the ZeroMQ listener. Can choose between: tcp,
ipc, and pgm.

Example:

listener:
 zmq:
 protocol: ipc

socket_type: PULL

The nature of the socket to recevie the messages. Although the user can choose
from a variety of types, PULL and SUB fit the best into napalm-logs.

Example:

listener:
 zmq:
 socket_type: SUB

Publisher

The Publisher subsystem is a pluggable interface for outbound messages,
structured following the OpenConfig / IETF YANG models.
The messages can be published over a variety of services – see
Available publishers and their options.
From the command line, the Publisher module can be selected using the
--publisher option, e.g.:

$ napalm-logs --publisher kafka

From the configuration file, the Publisher can be specified using the
publisher option, eventually with several options. The options depend on the
nature of the Publisher.

Example: publisher configuration using the default configuration

publisher: zmq

Example: publisher configuration using custom options

publisher:
 kafka:
 topic: napalm-logs-out

Note

The IP Address / port for the Publisher be specified using the
publish-address: 0.0.0.0 and
publish-port: 49017
configuration options.

Multiple publishers

New in version 0.4.0.

It is possible to export the structured napalm-logs structured documents into
multiple systems, over multiple channels, each with its separate configuration
options. This feature is available only from the configuration file, e.g.:

publisher:
 - zmq:
 address: 1.2.3.4
 port: 5678
 - kafka:
 topic: napalm-logs-out
 - http:
 address: https://example.com/webhook

Available publishers and their options

	CLI

	HTTP

	Kafka

	Log

	ZeroMQ

Globally available options

Additionally, the user can configure the following options, available to all
publishers:

disable_security: False

The message encryption can be disabled per publisher as well. Similar to the
main disable-security configuration option, is it
recommended not to disable security, though this can be needed in certain
particular cases.

Configuration example:

publisher:
 - cli:
 disable_security: true
 - zmq: {}

error_whitelist: []

New in version 0.4.0.

Publish only the error messages included in this list. The whitelist/blacklist
logic is implemented in such a way that if anything is added in this list,
only these message types will be published and nothing else.

Default: None (empty list)

Configuration example:

publisher:
 - kafka:
 error_whitelist:
 - UNKNOWN
 - RAW
 - zmq:
 error_whitelist:
 - BGP_MD5_INCORRECT
 - BGP_NEIGHBOR_STATE_CHANGED

error_blacklist: ['RAW', 'UNKNOWN']

New in version 0.4.0.

Filter out the error types publisher. The error messages included in this list
will not be published.

Default: RAW, UNKNOWN (both RAW and UNKNOWN message types will not
be published by default).

Configuration example:

publisher:
 - kafka:
 error_blacklist:
 - UNKNOWN
 - RAW
 - USER_ENTER_CONFIG_MODE
 - zmq:
 error_blacklist:
 - UNKNOWN

only_raw: False

New in version 0.4.0.

When this option is enabled, the publisher will publish only the syslog
messages that could not be parsed.

Example:

publisher:
 - zmq:
 address: 1.2.3.4
 port: 1234
 - zmq:
 address: 5.6.7.8
 port: 5678
 only_raw: true

Note

This option is a shortcut to the error_whitelist: []
configuration option introduced in 0.4.0 (codename Crowbar), by adding the
RAW message to the whitelist message types, i.e.,

publisher:
 - zmq:
 address: 1.2.3.4
 port: 1234
 - zmq:
 address: 5.6.7.8
 port: 5678
 error_whitelist:
 - RAW

only_unknown: False

New in version 0.4.0.

When this option is configured, napalm-logs will publish only the structured
documents that are marked as UNKNWON (i.e., napalm-logs was unable to parse
the message and determine the operating system).

Example:

publisher:
 kafka:
 only_unknown: true

Note

This option is a shortcut to the error_whitelist: []
option introduced in 0.4.0 (codename Crowbar), by adding the UNKNOW
message type to the whitelist, i.e.,

publisher:
 kafka:
 error_whitelist:
 - UNKNOWN

send_raw: False

If this option is set, all processed syslog messages, even ones that have not
matched a configured error, will be published over the specified transport.
This can be used to forward to log server for storage.

Example:

publisher:
 zmq:
 send_raw: true

Note

This option is just a shortcut to the
error_blacklist: ['RAW', 'UNKNOWN'] configuration option introduced in
0.4.0 (codename Crowbar), by removing the RAW error type from the
blacklisted message types, i.e.,

publisher:
 zmq:
 error_blacklist:
 - UNKNOWN

send_unknown: False

If this option is set, all processed syslog messages, even ones that have not
matched a certain operating system, will be published over the specified
transport. This can be used to forward to log server for storage.

Example:

publisher:
 kafka:
 send_unknown: true

Note

This option is just a shortcut to the
error_blacklist: ['RAW', 'UNKNOWN'] option introduced in 0.4.0 (codename
Crowbar), by removing the UNKNOWN message from the blacklist, i.e.,

publisher:
 kafka:
 error_blacklist:
 - RAW

serializer: msgpack

New in version 0.4.0.

The serializer to be used when publishing the structure napalm-logs document.

Default: MessagePack.

You can specify a separate serialize per publisher, e.g.:

publisher:
 - kafka:
 serializer: json
 - cli:
 serializer: pprint

CLI

This publisher is for debugging use only and does not have additional
configuration options. It can be used from the CLI and the structured messages
are printed in clear on the command line, e.g.:

$ sudo napalm-logs --publisher cli

HTTP

New in version 0.3.0.

Publish objects by invoking a HTTP endpoint.

This Publisher module can use several backends (currently just two: Tornado
and Requests). If no explicity backend is specified, using the
backend option, Tornado has the higher precedence due to
its speed, as it allows asynchronous requests.

Note

The ref:configuration-options-address must have contain the http://
or https:// schema. The address can however be specified more explicitly
under the publisher configuration options, using the
ref:publisher-http-address field.

Configuration examples:

	From the command line

$ napalm-logs --publisher http --address https://example.com/hook

	Basic YAML configuration

publisher: http

	YAML configuration with more options

publisher:
 http:
 address: 'https://example.com/hook'
 method: POST
 headers:
 Authorization: OAuth 89a229ce1a8dbcf9f
 backend: tornado

Available options

address

Specifies the endpoint to invoke when a new event is published. The value
must contain the http:// or https:// schema.

Example:

publisher:
 http:
 address: 'https://example.com/hook'

backend

The name of the toolset to use as backend to execute the HTTP requests. Can
choose between:

	tornado

	requests

When this option is not specifically configured, the publisher will try to use
the library found to be installed on the machine, Tornado having the highest
precedence.

Example:

publisher:
 http:
 backend: requests

headers

A dictionary (hash / mapping) of the headers.

Example:

publisher:
 http:
 headers:
 Content-Type: text/json
 Pragma: no-cache
 Cache-Control: no-cache

max_clients: 10

The maximum number of parallel clients.

Example:

publisher:
 http:
 max_clients: 20

method: POST

HTTP method to use. Choose from: GET, POST, PUT, HEAD (the
others probably don’t make sense, however they are allowed). For more details
see this document [https://www.w3schools.com/tags/ref_httpmethods.asp].

Example:

publisher:
 http:
 method: GET

params

A set of parameters (key-value) to be sent together with the request.

Example:

publisher:
 http:
 params: key1=val1&key2=val2

password

The password if needed to authenticate the HTTP request.

Example:

publisher:
 http:
 password: example

username

The username if needed to authenticate the HTTP request.

Example:

publisher:
 http:
 username: example

verify_ssl: true

By default, SSL certificates will be verified. However, for testing or debugging
purposes, SSL verification can be turned off. It is higly discouraged to disable
thio option in production environments.

Example:

publisher:
 http:
 verify_ssl: false

Kafka

Submit structured messages to Apache Kafka.

$ sudo napalm-logs --publisher kafka

Available options:

bootstrap_servers

host[:port] string (or list of host[:port] strings) that the consumer
should contact to bootstrap initial cluster metadata. This does not have to be
the full node list. It just needs to have at least one broker that will respond
to a Metadata API Request.

Example:

publisher:
 kafka:
 bootstrap_servers:
 - kk1.brokers.example.org
 - kk1.brokers.example.org:1234
 - 192.168.0.1
 - 192.168.0.2:5678

topic: napalm-logs

The Kafka topic to use when publishing messages.

Example:

publisher:
 kafka:
 topic: napalm-logs-out

Log

Forward objects to an external logging server.

$ sudo napalm-logs --publisher log

ZeroMQ

Publish objects over ZeroMQ where multiple clients can subscribe.

$ sudo napalm-logs --publisher zmq

Serializer

New in version 0.4.0.

The Serializer subsystem is a pluggable interface used just before a structured
napalm-logs document is sent to the Publisher interface.

The default Serializer used is MessagePack.

From the command line, the Serializer can be selected using the --serializer
(or -s) option, e.g.:

$ napalm-logs -s yaml
$ napalm-logs --serializer pprint

From the configuration file, the Serializer can be specified using the
serializer option.

Configuration file example:

serializer: json

Multiple Publishers

It is possible to select a separate serializer per Publisher, specifying the
name using the serializer: msgpack configuration option.

Available serializers

	MessagePack

	JSON

	YAML

	Pretty Print

	String

MessagePack

This is the default Serializer used by napalm-logs.

MessagePack is an efficient binary serialization format. It lets you exchange
data among multiple languages like JSON. But it’s faster and smaller. Small
integers are encoded into a single byte, and typical short strings require
only one extra byte in addition to the strings themselves.

Source: MessagePack [https://msgpack.org/].

Given the following napalm-logs document (as JSON):

{
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "session_state": "CONNECT"
 }
 }
 }
 }
 }
 },
 "message_details": {
 "processId": null,
 "severity": 4,
 "facility": 0,
 "hostPrefix": null,
 "pri": "4",
 "processName": "kernel",
 "host": "vmx01",
 "tag": "tcp_auth_ok",
 "time": "21:23:00",
 "date": "Jul 20",
 "message": "Packet from 192.168.140.254:61664 wrong MD5 digest"
 },
 "timestamp": 1500585780,
 "facility": 0,
 "ip": "127.0.0.1",
 "host": "vmx01",
 "yang_model": "openconfig-bgp",
 "error": "BGP_MD5_INCORRECT",
 "os": "junos",
 "severity": 4
}

The document will be binary serialized as:

\x8a\xacyang_message\x81\xa3bgp\x81\xa9neighbors\x81\xa8neighbor\x81\xaf192.168.140.254\x81\xa5state\x81\xadsession_state\xa7CONNECT\xafmessage_details\x8b\xa9processId\xc0\xa8severity\x04\xa8facility\x00\xaahostPrefix\xc0\xa3pri\xa14\xabprocessName\xa6kernel\xa4host\xa5vmx01\xa3tag\xabtcp_auth_ok\xa4time\xa821:23:00\xa4date\xa6Jul 20\xa7message\xd92Packet from 192.168.140.254:61664 wrong MD5 digest\xa8facility\x00\xa2ip\xa9127.0.0.1\xa5error\xb1BGP_MD5_INCORRECT\xa4host\xa5vmx01\xaayang_model\xaeopenconfig-bgp\xa9timestamp\xceYq\x1f4\xa2os\xa5junos\xa8severity\x04

JSON

The structured messages can be JSON serialized.

Given the following napalm-logs document (represented as a Python object):

{'error': 'BGP_MD5_INCORRECT',
 'facility': 0,
 'host': 'vmx01',
 'ip': '127.0.0.1',
 'message_details': {'date': 'Jul 20',
 'facility': 0,
 'host': 'vmx01',
 'hostPrefix': None,
 'message': 'Packet from 192.168.140.254:61664 wrong MD5 digest',
 'pri': '4',
 'processId': None,
 'processName': 'kernel',
 'severity': 4,
 'tag': 'tcp_auth_ok',
 'time': '21:23:00'},
 'os': 'junos',
 'severity': 4,
 'timestamp': 1500585780,
 'yang_message': {'bgp': {'neighbors': {'neighbor': {'192.168.140.254': {'state': {'session_state': 'CONNECT'}}}}}},
 'yang_model': 'openconfig-bgp'}

The document will be JSON serialized as:

{
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "session_state": "CONNECT"
 }
 }
 }
 }
 }
 },
 "message_details": {
 "processId": null,
 "severity": 4,
 "facility": 0,
 "hostPrefix": null,
 "pri": "4",
 "processName": "kernel",
 "host": "vmx01",
 "tag": "tcp_auth_ok",
 "time": "21:23:00",
 "date": "Jul 20",
 "message": "Packet from 192.168.140.254:61664 wrong MD5 digest"
 },
 "timestamp": 1500585780,
 "facility": 0,
 "ip": "127.0.0.1",
 "host": "vmx01",
 "yang_model": "openconfig-bgp",
 "error": "BGP_MD5_INCORRECT",
 "os": "junos",
 "severity": 4
}

YAML

The structured messages can be YAML serialized. This can be used for a variety
of cases, including CLI usage for a human readable display, but also for other
Publisher interfaces.

Given the following napalm-logs document (as JSON):

{
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "session_state": "CONNECT"
 }
 }
 }
 }
 }
 },
 "message_details": {
 "processId": null,
 "severity": 4,
 "facility": 0,
 "hostPrefix": null,
 "pri": "4",
 "processName": "kernel",
 "host": "vmx01",
 "tag": "tcp_auth_ok",
 "time": "21:23:00",
 "date": "Jul 20",
 "message": "Packet from 192.168.140.254:61664 wrong MD5 digest"
 },
 "timestamp": 1500585780,
 "facility": 0,
 "ip": "127.0.0.1",
 "host": "vmx01",
 "yang_model": "openconfig-bgp",
 "error": "BGP_MD5_INCORRECT",
 "os": "junos",
 "severity": 4
}

The document will be YAML serialized as:

error: BGP_MD5_INCORRECT
facility: 0
host: vmx01
ip: 127.0.0.1
message_details:
 date: Jul 20
 facility: 0
 host: vmx01
 hostPrefix: null
 message: Packet from 192.168.140.254:61664
 wrong MD5 digest
 pri: 4
 processId: null
 processName: kernel
 severity: 4
 tag: tcp_auth_ok
 time: 21:23:00
os: junos
severity: 4
timestamp: 1500585780
yang_message:
 bgp:
 neighbors:
 neighbor:
 192.168.140.254:
 state:
 session_state: CONNECT
yang_model: openconfig-bgp

Pretty Print

PrettyPrint string representation of the Python object. This Serializer is
mainly recommended to be used for CLI debugging.

For example, given the following napalm-logs document (as JSON):

{
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "session_state": "CONNECT"
 }
 }
 }
 }
 }
 },
 "message_details": {
 "processId": null,
 "severity": 4,
 "facility": 0,
 "hostPrefix": null,
 "pri": "4",
 "processName": "kernel",
 "host": "vmx01",
 "tag": "tcp_auth_ok",
 "time": "21:23:00",
 "date": "Jul 20",
 "message": "Packet from 192.168.140.254:61664 wrong MD5 digest"
 },
 "timestamp": 1500585780,
 "facility": 0,
 "ip": "127.0.0.1",
 "host": "vmx01",
 "yang_model": "openconfig-bgp",
 "error": "BGP_MD5_INCORRECT",
 "os": "junos",
 "severity": 4
}

The document will be serialized as:

{'error': 'BGP_MD5_INCORRECT',
 'facility': 0,
 'host': 'vmx01',
 'ip': '127.0.0.1',
 'message_details': {'date': 'Jul 20',
 'facility': 0,
 'host': 'vmx01',
 'hostPrefix': None,
 'message': 'Packet from 192.168.140.254:61664 wrong MD5 digest',
 'pri': '4',
 'processId': None,
 'processName': 'kernel',
 'severity': 4,
 'tag': 'tcp_auth_ok',
 'time': '21:23:00'},
 'os': 'junos',
 'severity': 4,
 'timestamp': 1500585780,
 'yang_message': {'bgp': {'neighbors': {'neighbor': {'192.168.140.254': {'state': {'session_state': 'CONNECT'}}}}}},
 'yang_model': 'openconfig-bgp'}

String

Simply a string representation of the Python object. This Serializer can mainly
be used for CLI debugging.

For example, given the following napalm-logs document (as JSON):

{
 "yang_message": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "state": {
 "session_state": "CONNECT"
 }
 }
 }
 }
 }
 },
 "message_details": {
 "processId": null,
 "severity": 4,
 "facility": 0,
 "hostPrefix": null,
 "pri": "4",
 "processName": "kernel",
 "host": "vmx01",
 "tag": "tcp_auth_ok",
 "time": "21:23:00",
 "date": "Jul 20",
 "message": "Packet from 192.168.140.254:61664 wrong MD5 digest"
 },
 "timestamp": 1500585780,
 "facility": 0,
 "ip": "127.0.0.1",
 "host": "vmx01",
 "yang_model": "openconfig-bgp",
 "error": "BGP_MD5_INCORRECT",
 "os": "junos",
 "severity": 4
}

The document will be serialized as:

{u'yang_message': {u'bgp': {u'neighbors': {u'neighbor': {u'192.168.140.254': {u'state': {u'session_state': u'CONNECT'}}}}}}, u'message_details': {u'processId': None, u'severity': 4, u'facility': 0, u'hostPrefix': None, u'pri': u'4', u'processName': u'kernel', u'host': u'vmx01', u'tag': u'tcp_auth_ok', u'time': u'21:23:00', u'date': u'Jul 20', u'message': u'Packet from 192.168.140.254:61664 wrong MD5 digest'}, u'facility': 0, u'ip': u'127.0.0.1', u'error': u'BGP_MD5_INCORRECT', u'host': u'vmx01', u'yang_model': u'openconfig-bgp', u'timestamp': 1500585780, u'os': u'junos', u'severity': 4}

Logger

Deprecated since version 0.4.0.

Warning

The Logger interface has been deprecated beginning with release 0.4.0.
Please use the Publisher interface instead, using the
only_raw: False or send_raw: False Publisher
configuration options. For example, if you used the following configuration
for the Logger:

logger:
 kafka:
 send_raw: true

The configuration must be updated to:

Using only_raw is recommended to ensure that the Publisher will be used
only for this exact purpose. However, the user can decide what is the most
suitable for their use case.

The logger subsystem uses the modules from the publisher pluggable subsystem to
send partially parsed syslog messages. The configuration options are the same
as for the publisher referenced – see the Available publishers and their options. It can be
used together with the publisher system in such a way the publisher externalizes
the fully processed objects and the clients can subscribe and collect them,
while the logger submits the partially parsed messages. This is ideal for
logging these unprocessed messages, hence the logger name.

This subsystem is by default disabled and it cannot be configured from the
command line, but only from the configuration file. Besides the publisher
name to be specified, it also requires to configure at least one set one of the
options below:

send_raw

If this option is set, all processed syslog messages, even ones that have not
matched a configured error, will be output via the specified transport.
This can be used to forward to log server for storage.

Example:

logger:
 kafka:
 send_raw: true

send_unknown

If this option is set, all processed syslog messages, even ones that have not
matched a certain operating system, will be output via the specified transport.
This can be used to forward to log server for storage.

Example:

logger:
 zmq:
 send_unknown: true

The format of the syslog messages

While the structure of the syslog messages should not be very much different
than the base IEFT syslog protocol [https://tools.ietf.org/html/rfc5424],
each platform has its own format which does not necessarily commit to the
standards.

As in opposite to the standard structure [https://www.balabit.com/documents/syslog-ng-ose-latest-guides/en/syslog-ng-ose-guide-admin/html/concepts-message-ietfsyslog.html], the most
common format of the syslog messages has two components:

	HEADER (including PRI)

	MSG

In general their format varies between platforms, the structure being explained
in the following documents, individually:

	Junos

	Cisco IOS-XR

	Arista EOS

	Cisco NX-OS

PRI

The Priority value is calculated by first multiplying the Facility number by 8
and then adding the numerical value of the Severity. For example, a kernel
message (Facility=0) with a Severity of Emergency (Severity=0) would have a
Priority value of 0.

In addition to the standard PRI [https://www.balabit.com/documents/syslog-ng-ose-latest-guides/en/syslog-ng-ose-guide-admin/html/ietfsyslog-pri.html] classification, each platform defines additional
values for Facility which may differ from a platform to another.

The Severity however usually respects the standard:

	Numerical code

	Severity level

	Description

	0

	emergency

	System panic or other condition that
causes the router to stop functioning

	1

	alert

	Conditions that require immediate
correction, such as a corrupted
system database

	2

	critical

	Critical conditions, such as hard errors

	3

	error

	Error conditions that generally have less
serious consequences than errors in the
emergency, alert, and critical levels

	4

	warning

	Conditions that warrant monitoring

	5

	notice

	Conditions that are not errors but
might warrant special handling

	6

	info

	Events or nonerror conditions of interest

	7

	debug

	Software debugging messages (these appear
only if a technical support
representative has instructed you to
configute this severity level

HEADER

The syslog messages from network devices do not respect the standard HEADER [https://www.balabit.com/documents/syslog-ng-ose-latest-guides/en/syslog-ng-ose-guide-admin/html/ietfsyslog-header.html].

MSG

The MSG part contains the text of the message itself.

Junos

In general, the structure of the syslog messages generated by Junos has the
following format:

<PRI><datetime> <hostname> <process-name>[<process-id>]: <syslog-tag>: <MSG>

Where:

	datetime: The time when the message was generated in the format: MMM dd hh:mm:ss.

	hostname: The device that generated the message.

	process-name: The name of the process that generated the mesage.

	process-id The PID of the process that generated the message.

	syslog-tag: The Junos tag of the syslog message. To see all the possible tags, execute help syslog ?.

Examples:

<25>Jun 21 14:03:12 vmx01 eswd[2902]: ESWD_BPDU_BLOCK_ERROR_DISABLED: ge-0/0/17.0: bpdu-block disabled port

<87>Jul 5 05:52:44 vmx01 rpd[1848]: bgp_read_message:2764: NOTIFICATION received from 1.2.3.4 (External AS 1234): code 6 (Cease) subcode 5 (Connection Rejected)

PRI

Junos defines the following facilities, based on the standard PRI [https://www.balabit.com/documents/syslog-ng-ose-latest-guides/en/syslog-ng-ose-guide-admin/html/ietfsyslog-pri.html]:

	Numerical code

	Standard keyword

	Junos facility name

	Description

	0

	kern

	LOG_KERN

	Actions performed or errors
encountered by the Junos kernel

	1

	user

	LOG_USER

	Actions performed or errors
encountered by user-space processes

	3

	daemon

	LOG_DAEMON

	
Actions performed or errors

encountered by system processes

	4

	auth

	LOG_AUTH

	
Authentication and authorization

attempts

	5

	syslog

	LOG_SYSLOG

	
Actions performed or errors

encountered by the Junos system

logging utility

	7

	news

	LOG_NEWS

	
Network news subsystem

	10

	authpriv

	LOG_AUTHPRIV

	
Authentication and authorization

attempts that can be viewed by

superusers only

	11

	ftp

	LOG_FTP

	
Actions performed or errors

encountered by the FTP process

	12

	ntp

	LOG_NTP

	
Actions performed or errors

encountered by the Network

Time Protocol (NTP)

	15

	cron

	LOG_CRON

	
Actions performed or errors

encountered by the cron process

To see the messages that are under a specific facility, Junos allows you to
check that using the following command: help syslog facility <junos facility name>,
e.g., help syslog facility LOG_USER.

Cisco IOS-XR

In general, the structure of the syslog messages generated by IOS-XR has the
following format:

<PRI><messageid>: <hostname> <linecard>:<datetime>: <process-name>[<process-id>]: %<facility-name>-<severity>-<tag>: <MSG>

Where:

	messageid: The ID number of the message.

	hostname: The device that generated the message. To ensure that the hostname is included, follow the instructions from Cisco IOS-XR.

	linecard: The linecard slot.

	datetime: The time when the message was generated in the format: MMM dd hh:mm:ss.fff or MMM dd hh:mm:ss.fff ZZZ.

	process-name: The name of the process that generated the mesage.

	process-id The PID of the process that generated the message.

	facility-name: The name of the Facility.

	severify: The value of the Severity.

	tag: The syslog message tag.

Examples:

<149>2647599: vmx01 RP/0/RSP1/CPU0:Mar 28 15:08:30.941 UTC: bgp[1051]: %ROUTING-BGP-5-MAXPFX : No. of IPv4 Unicast prefixes received from 1.2.3.4 has reached 94106, max 125000

<187>94307: gw2.acy1 LC/0/2/CPU0:Jul 7 20:16:14.834 : ifmgr[214]: %PKT_INFRA-LINK-3-UPDOWN : Interface TenGigE0/2/0/4, changed state to Down

Arista EOS

In general, the structure of the syslog messages generated by EOS has the
following format:

<PRI><datetime> <hostname> <process-name>: %<facility-name>-<severity>-<tag>: <MSG>

Where:

	hostname: The device that generated the message. To ensure that the hostname is included, follow the instructions from Arista EOS.

	datetime: The time when the message was generated in the format: MMM dd hh:mm:ss.

	process-name: The name of the process that generated the mesage.

	facility-name: The name of the Facility.

	severify: The value of the Severity.

	tag: The syslog message tag.

Examples:

``<149>Apr 16 11:04:17 edge01 Rib: %BGP-3-NOTIFICATION: received from neighbor 194.53.172.97 (AS 2611) 6/1 (Cease/maximum number of prefixes reached) 0 bytes
``

Cisco NX-OS

In general, the structure of the syslog messages generated by IOS-XR has the
following format:

<PRI><hostname>: <datetime>: %<facility-name>-<severity>-<tag>: <MSG>

Where:

	hostname: The device that generated the message.

	datetime: The time when the message was generated in the format: MMM dd hh:mm:ss.fff ZZZ.

	facility-name: The name of the Facility.

	severify: The value of the Severity.

	tag: The syslog message tag.

Examples:

``<190>sw01.pdx01: 2017 Jul 28 14:42:46 UTC: %AUTHPRIV-6-SYSTEM_MSG: pam_unix(dcos_sshd:session): session opened for user luke by (uid=0) - dcos_sshd[12977]
``

Development

Here we you will find out how to add new functionality to napalm-logs.

	Architecture

	Pluggable Modules

	Device Profiles

Architecture

Besides speed, there were a couple of considerations we had in mind when we
designed napalm-logs:

	Size

	Security

	Flexibility

	Reliability

The core achitecture can be represented in the diagram below; for simplicity,
we will analyse the security in the Authenticator
paragraph:

[image: napalm-logs architecture]
The napalm-logs prgram starts a couple of processes to handle and manipulate the
syslog messages. We called them:

	Listener

	Server

	Device (one per platform)

	Publisher

The processes communicate between them using
ZeroMQ IPC [http://api.zeromq.org/2-1:zmq-ipc].

Listener

The Listener has the role to receive the syslog snippets and queue them
(PUSH) into an IPC socket to the Server. This has two advantages: we ensure
we queue the messages immediately as received - no time wasted triaging (this
is very important when the messages are received over UDP, for example – see
the UDP listener). The other gain by doing so is that we don’t
loose any messages: not even when the napalm-logs process crashes or is
intentionally stopped: after restart, the Server will continue dequeuing
messages from that buffer.

The Listener is a pluggable interface, check Listener for more details.

The communication between the Listener and the Server is a straight PUSH-PULL
socket.

Server

The Server is the process that deals with the triage: using the
Device Profiles, it identifies the platform it comes from. Using this
information, the messages will be queued to the corresponding worker (see next
section). The pattern in this case is a
Ventiallator Sink [http://zguide.zeromq.org/py:all#Divide-and-Conquer],
more specifically implemented using
ROUTER and DEALER [http://zeromq.org/tutorials:dealer-and-router]
sockets, where the Server is the ROUTER, and each Platform Worker is a DEALER.

The messages at this point are partially parsed, and they can be published
using one of the available Publisher, through the Logger
interface.
When unable to identify the platform, the message is by default discarded.
However, the user can activate the messages to be published using the
send_unknown: False option, the format being UNKNOWN.
Note that the Logger interface has a similar option,
send_unknown.

Device

There is one device worker started per platform. Each worker receives the
partially processed messages from the Server, then extracts the data and maps
it to the OpenConfig or IETF YANG model, as configured in the
Device Profiles. When a message does not have a corresponding profile
mapping, it is discarded. To receive these messages, the user can choose
to publish them using the send_raw: False option.

The messages are then sent to the Publisher IPC socket using PUSH.

You can avoid unwanted workers using the device_blacklist
and device_whitelist options.

Publisher

The Publisher process retrieves the messages from the IPC socket using PULL
operations, then forwards them over the Publisher interfaces. When the
messages encryption is not turned off (see
disable-security), the Publisher also has the role
of encrypting and signing before publishing. Regardless of the security being
disabled or not, the messages are binary serialised using
MessagePack [http://msgpack.org/].

The Publisher is another pluggable interface, check Publisher for more
further information.

Authenticator

By default, napalm-logs starts an additional process, the Authenticator. When
security is explicitly disabled using the
disable-security option, this process is not
started.

[image: napalm-logs architecture with the authenticator process]
The Authenticator generates a private and a signature key, which are used by
the Publisher to encrypt and sign the binary serialised messages.

The clients receive these keys through an exchange via a TCP socket; this socket
is SSL secured using the certificate and the
keyfile provided by the user. Each client connection
is handled in a separate thread, and the Authenticator keeps this connection
alive for further notifications.

Read more about the Client Authentication.

Pluggable Modules

napalm-logs is designed to be pluggable, so new methods for both input and output and can be added easily. This is to allow for the widest compatibility possible.

Adding a New Module

If you need to use a different method to pass in your syslog messages or to get the processed messages, and it is not yet defined, you can write your own.

These are the basic steps required, and are the same for all of the pluggable sections.

Create a new module in the appropriate directory, name it the same as the protocol it will be using.

Copy the general format from an existing module.

All options for your module can be specified in the general config file, these will be passed to your module as kwargs.

The module will be initialised, then started by calling the start() function.

If a signal is sent to the parent process, it will send a SIGTERM to your module, therefore this should be caught and the module should exit cleanly.

This can be done by including the following in your start():

signal.signal(signal.SIGTERM, self._exit_gracefully)
self.__up = True
Code before the loop
while self.__up:
 # Code to execute for each object

Then adding the following function:

def _exit_gracefully(self, signum, _):
 log.debug('Caught signal in <process name> process')
 self.stop()

And also having a stop() which closes everything cleanly.

It is a good idea to look at some of the other modules to get an idea of how to structure yours.

Once written you should update __init__ in the appropriate directory to include your newly created class, and add this class to the dict of all selectable classes.

If your module has dependencies then you should add a check to make sure the dependency is present, and call that function before adding your class to the dict of all selectable classes.

If you would like to have any default values for your module you can add these to napalm_logs/config/__init__.py under the appropriate *_opts dictionary.

Device Profiles

Most network equipment vendors use different syslog message format to each other,
some even use a different format for each of their devices. For napalm-logs
to be able to take a syslog message from a device and output it in a
vendor-agnostic way, it needs to know the format of that device’s messages.

Each network operating system has a set of profiles, defined under a directory
with the name of the platform, by default defined under napalm_logs/config.
For example, the profiles for eos are defined under
napalm_logs/config/eos/, for junos under napalm_logs/config/junos/
and so on.

Directory tree structure example:

napalm_logs/config/
├── __init__.py
├── eos
│ └── init.yml
├── iosxr
│ └── __init__.py
├── junos
│ └── init.yml
└── nxos
 └── init.yml

The user can select to extend the capabilities of the public library,
by defining profiles under a directory, specifying the path using the
extension-config-path option.

Custom directory tree example:

/pat/to/custom/config/
├── eos
│ └── bgp_3_notification.py
├── junos
 └── init.yml
 └── UI_DBASE_LOGIN_EVENT.py
 └── SNMP_TRAP_LINK_DOWN.py

Each syslog message can be divided into two logical sections:

	the identification section, which provides enough information to identify the operating system that generated the message, together with other details, such as datetime, hostname, PRI [https://www.balabit.com/documents/syslog-ng-ose-latest-guides/en/syslog-ng-ose-guide-admin/html/bsdsyslog-pri.html], process daemon, PID, etc. In napalm-logs, this section will be referenced as prefix.

	the actual message section, which is the part of the syslog message which contains the useful information. In napalm-logs, this section will be referenced as message.

Example: given the message Mar 30 12:45:19 re0.edge01.bjm01 rpd[15852]: BGP_PREFIX_THRESH_EXCEEDED 1.2.3.4 (External AS 15169): Configured maximum prefix-limit threshold(160) exceeded for inet-unicast nlri: 181 (instance master):

	Mar 30 12:45:19 re0.edge01.bjm01 rpd[15852]: BGP_PREFIX_THRESH_EXCEEDED is the prefix section.

	1.2.3.4 (External AS 15169): Configured maximum prefix-limit threshold(160) exceeded for inet-unicast nlri: 181 (instance master) is the message section.

Both sections are platform-specific, and the prefix part can be used to
idenfiy the operating system that generated a certain syslog message. The
identification is done via prefix matchers (prefix parsers). Similarly,
the extraction of the information from the message section is done via
message parsers.

Please note that some platforms do not respect a single prefix pattern, but a
variety, this is why we need a couple of prefix matchers.

YAML Profiles

Each config file has two distinct sections, one to identify the OS that the
message originated from (called prefixes), and one to identify each log
message that napalm-logs should convert (called messages).

prefixes

This section defines what we have defined above as prefix matches, or prefix
parsers, for the OS in question.

Here is the config for junos:

prefixes:
 - time_format: "%b %d %H:%M:%S"
 values:
 date: (\w+\s+\d+)
 time: (\d\d:\d\d:\d\d)
 hostPrefix: (re\d.)?
 host: ([^]+)
 processName: /?(\w+)
 processId: \[?(\d+)?\]?
 tag: (\w+)
 line: '{date} {time} {hostPrefix}{host} {processName}{processId}: {tag}: '

Note

Prefix parsers are usually defined as __init__.yml, init.yml or
index.yml.

What does each option mean?

line

This represents the format of the part of the log message that present most of
the time. Each section of the message that can change should be replaced by a
variable. If a variable isn’t always present then you should add it to the line
but make that variable optional (covered in the values section).

Any white space in line will match any number of contiguous white space,
therefore if it is possible for there to be either one white space or two white
spaces, you should only add one white space to line.

values

This is used to specify the regex pattern for each of the variables specified
in line. All variables in line should have an entry under values,
even if you have no use for them.

Each of these variables will be output in a message dict after processing.

messages

Here is where all log messages that should be matched are specified.

Note

Message parsers are usually defined under a YAML file having the name of
the error ID they produce. However, this is not absolutely mandatory.

Here is an example message:

messages:
 - error: INTERFACE_DOWN
 tag: SNMP_TRAP_LINK_DOWN
 values:
 snmpID: (\d+)
 adminStatusString|uppercase: (\w+)
 adminStatusValue: (\d)
 operStatusString|uppercase: (\w+)
 operStatusValue: (\d)
 interface: ([\w\-\/]+)
 line: 'ifIndex {snmpID}, ifAdminStatus {adminStatusString}({adminStatusValue}), ifOperStatus {operStatusString}({operStatusValue}), ifName {interface}'
 model: openconfig_interfaces
 mapping:
 variables:
 interfaces//interface//{interface}//state//admin_status: adminStatusString
 interfaces//interface//{interface}//state//oper_status: operStatusString
 static: {}

What does each option mean?

error

This is the vendor agnostic ID for the error message, the error for each
message should be unique. Currently we are using the junos definitions where
possible, this is likely to change.

tag

This is the unique ID from the device itself.

This field is used when identifying if the log message is related to the
configured error. Some devices use the same name for different types of logs,
therefore this does not need to be unique.

If you look at the config for prefix above, you will see the variable
tag in line, this is the same tag as configured here and matched on.

match_on: tag

This field name the field that try to match on. Defaults to tag.

line

This is the same as line above.

values

This is the same as values above, other than the fact they can be used in
mapping (this will be covered under mapping). You can manipulate these
values using replace functions found in napalm_logs.utils.Replace i.e
adminStatusString|uppercase.

model

This is the YANG model to use to output the log message. You can find all
models and their structure here [http://ops.openconfig.net/branches/master/].

mapping

This shows where in the OpenConfig model each of the variables in the message
should be placed. There are two options, variables and static.
variables should be used when the value being set is taken from the message,
and static should be used when the value is manually set.

Pure Python profiles

Writing YAML profiles is flexible and fast, but this model comes with many
logical limitations. For this reason, the developer can equally write pure
Python prefixes or messages parsers. They can be defined under the same
directory as the YAML descriptors, and they will be loaded dynamically.

Note

The user is allowed to use any combination of YAML and pure Python parsers
to match the messages and defined the prefixes.

Similarly to the YAML profilers, the Python profiles have two logical sections:
prefixes that provide the operating system identification and messages
that extract the information from the raw syslog messages and maps to an
object having the YANG hierarchy. Both are free-form Python modules,
with a single constraint that will be explained below.

prefixes

A pure Python module that provides the prefix configuration, in order to
identify the operating system generating the message.

A module providing the prefix needs to define a function called extract
that takes a single argument, msg which is the raw syslog message received
from the network device. The function has to return a dictionary with the
parts extracted from the syslog message, without any further processing. The
following keys are mandatory:

	host: the network device hostname, as provided in the syslog message

prefix section.
- tag: which is the unique identification tag of the syslog message, e.g. in the message Mar 30 12:45:19 re0.edge01.bjm01 rpd[15852]: BGP_PREFIX_THRESH_EXCEEDED 1.2.3.4 (External AS 15169): Configured maximum prefix-limit threshold(160) exceeded for inet-unicast nlri: 181 (instance master), the tag is BGP_PREFIX_THRESH_EXCEEDED. Other tag examples: bgp_read_message, ROUTING-BGP-5-MAXPFX or even Alarm set.
- message: is the message that what we have defied earlier as the message section, e.g. User 'dummy' entering configuration mode.

Note

Prefix parsers are usually defined as __init__.py, init.py or
index.py.

The following example is a Python prefix parser for NX-OS:

import re
from collections import OrderedDict

import napalm_logs.utils

_RGX_PARTS = [
 ('pri', r'(\d+)'),
 ('host', r'([^]+)'),
 ('date', r'(\d+ \w+ +\d+)'),
 ('time', r'(\d\d:\d\d:\d\d)'),
 ('timeZone', r'(\w\w\w)'),
 ('tag', r'([\w\d-]+)'),
 ('message', r'(.*)')
]
_RGX_PARTS = OrderedDict(_RGX_PARTS)

_RGX = '\<{0[pri]}\>{0[host]}: {0[date]} {0[time]} {0[timeZone]}: %{0[tag]}: {0[message]}'.format(_RGX_PARTS)

def extract(msg):
 return napalm_logs.utils.extract(_RGX, msg, _RGX_PARTS)

The example above matches messages from NX-OS looking like: <190>sw01.bjm01: 2017 Jul 26 14:42:46 UTC: %SOME-TAG: this is a very useful syslog message,
and extracts the following details:

	pri: 190

	host: sw01.bjm01

	tag: SOME-TAG

	date: 2017 Jul 26

	time: 14:42:46

	timeZone: UTC

	message: this is a very useful syslog message

These details are returned by the extract function, which returns a
dictionary such as:

{
 'pri': '190',
 'host': 'sw01.bjm01',
 'tag': 'SOME-TAG',
 'time': '14:42:46',
 'date': '2017 Jul 26',
 'timeZone': 'UTC',
 'message': 'this is a very useful syslog message'
}

Except tag, host and message, all the other fields can be optional,
and they are platform-specific (or even message-type-specific, in some very
sad cases). However, there are some particular cases when the other fields can
provide interesting information, eventually to be used to match messages using
the match_on option.

messages

Writing a message parser can be equally simple and flexible, the rules to
consider being:

	Define a function called emit that generates the syslog message.

	A dunder called __yang_model__ that specifies the YANG model.

	A variable names __tag__ that specifies the tag name, that is used to match when comparing the value of the tag field extracted from the message prefix and determine what parser should process the syslog message. However, this variable is optional – when not defined, it will use the filename as tag.

	A variable called __error__ that defines the name of the global error. Each structured message published by napalm-logs has a certain error tag, that is unique and cross-platform. This variable is also optional – when not defined, the error ID will be the file name.

Note

Message parsers are usually defined under a Python file having the name of
the error ID they produce. However, this is not absolutely mandatory.

Useful functions

At times, the developer may find very useful several functions, in order to
acomplish recurrent tasks:

	napalm_logs.utils.extract: Extracts the fields from a unstructured text, given a field-regex mapping. Please check the previous paragraph for an usage example.

	napalm_logs.utils.setval: Set a value under the dictionary hierarchy identified under the key. The key 'foo//bar//baz' will configure the value under the dictionary hierarchy {'foo': {'bar': {'baz': {}}}}. Example:

>>> napalm_logs.utils.setval('foo//bar//baz', 'value')
{'foo': {'bar': {'baz': 'value'}}}

	napalm_logs.utils.traverse: Traverse a dict or list using a slash delimiter target string. The target 'foo//bar//0' will return data['foo']['bar'][0] if this value exists, otherwise will return empty dict. Return None when not found. This can be used to verify if a certain key exists under dictionary hierarchy.

Release Notes

Latest Release

	Release 0.4.1

Previous Releases

	Release 0.4.0 - Codename Crowbar

	Release 0.3.0 - Codename Backsaw

	Release 0.2.0 - Codename Axe

	Release 0.1.0 - Codename Adze

Index

Release 0.1.0 - Codename Adze

This is the very first napalm-logs public release.

The main goal of this project is to provide a uniform, vendor-agnostic structure
based on the raw syslog messages from the network devices. The documents produced
by napalm-logs follow the hierarcy standardised in the OpenConfig and IETF YANG
models. There are however corner cases where a YANG model is not available yet,
or the information cannot be mapped, at least, at the time being. In this case
we still provide a cross-platform structure, even though not using an industry
standard.

The syslog messages can be received over a pluggable interface named Listener
(see the available Listener modules in this release).
The napalm-logs daemon extracts the information from the syslog snippets and
maps it into structures defined in the OpenConfig or IETF YANG models. The
messages are then published on various channels through the Publisher
interface, which is also pluggable.

Messages comming from platforms that could not be identified, or the message
mapping is not yet defined (i.e., missing Device Profiles) are by default
dropped. Using the Logger interface, the user can externalise these
partially-parsed messages to various systems for logging purpose.

Architecture

The napalm-logs daemon starts a list of processes:

	Listener

	Server

	A separate process per platform class

	Publisher

	Client Authentication

The messages are received on the Listener interface vie one of the
pluggable modules available (see Listener), and
queued to the Server. The Server is the separate process that identifies
the platform name based on the structure of the syslog message, then triages
them into separate queues, one per platform. For each platform there is a
dedicated process started, that reads the messages from the appropriate queue
and generates the structured object based on the standard YANG hierarchy. After
the object is generated, it is passed to the Publisher which binary
serialises the document, encrypts and publishes it on the selected channel.

The internal communitcation between the napalm-logs processes is realised
using unidirectional multiprocessing Pipes.

Available Modules

This release provides few modules for the pluggable interfaces:

Listener

	UDP

	TCP

	Kafka

Publisher

	CLI

	Log

	ZeroMQ

	Kafka

Available structured messages

	RAW

	UNKNOWN

	BGP_MD5_INCORRECT

	BGP_PEER_NOT_CONFIGURED

	BGP_PREFIX_LIMIT_EXCEEDED

	BGP_PREFIX_THRESH_EXCEEDED

	INTERFACE_DOWN

	NTP_SERVER_UNREACHABLE

	SYSTEM_ALARM

	USER_ENTER_CONFIG_MODE

	USER_LOGIN

Release 0.2.0 - Codename Axe

This release extended the list of Structured Messages, thanks to
John Anderson [https://github.com/lampwins]:

	BGP_NEIGHBOR_STATE_CHANGED

	BPDU_BLOCK_INTERFACE_DISABLED

	CONFIGURATION_COMMIT_COMPLETED

	CONFIGURATION_COMMIT_REQUESTED

	CONFIGURATION_ERROR

	CONFIGURATION_ROLLBACK

	INTERFACE_MAC_LIMIT_REACHED

	OSPF_NEIGHBOR_DOWN

	OSPF_NEIGHBOR_UP

Release 0.3.0 - Codename Backsaw

The third major release comes with several core improvements and messages, as
well as more modules for the pluggable interfaces.

Core changes

The internal pipeline for the internal communication between the napalm-logs
processes has been improved, now being based on ZeroMQ. The architecture
from the first release (see Architecture) wasn’t changed,
but rather improved following a standard
Ventiallator Sink [http://zguide.zeromq.org/py:all#Divide-and-Conquer]
topology, where the Server is the ROUTER, and each Device process is the
DEALER. This allows a better control and optimisation, as the user can start
more than one single Device process per platform class, using the new
device-worker-processes: 1 configuration option.
Increasing the number of Device processes will increase the processing speed.

Additionally, the memory consumption and can be better controlled using the
hwm: 1000 configuration option, by adjusting the maximum buffer
size. For maximum capacity, this value can be set as 0, which means infinite
queue, so there won’t be any messages dropped.

Logger interface deprecation

We aim to provide more core features and improvements in the upcoming releases:
starting with the upcoming release 0.4.0, you will be able to start multiple
Listener and Publisher processes, i.e., the syslog messages can be
received via multiple channels concomitantly, while the structured messages
published over several transports. Together with these changes, the Logger
interface will be deprecated, but its features will be leveraged through the
Publisher interface.

New Modules

The following modules have been added in this release:

Listener

	ZeroMQ

Publisher

	HTTP

New Structured Messages

	INTERFACE_UP

	ISIS_NEIGHBOR_DOWN

	ISIS_NEIGHBOR_UP

The following messages were already defined, now extending the list of supported
platforms:

	INTERFACE_DOWN added to iosxr

	CONFIGURATION_COMMIT_COMPLETED added to iosxr

Release 0.4.0 - Codename Crowbar

In this release we have a couple of major core improvements and changes, as
well as new features and structured messages.

Core improvements and additions

Beginning with this release you are now able to start multiple Listeners and Publishers, that means, the syslog messages
from the devices can be received from multiple sources concomitantly, and,
similarly, published over multiple channels at the same time. Each can have
a separate group of settings, including disable_security to publish the messages without being
encrypted and signed for that specific Publisher only.

Additionally, we have introduced the Serializer subsystem that allows to
serialize the structured napalm-logs messages in different formats chosen by
the user. The following serializers are available:

	MessagePack (which was the only serializer available prior to
this release).

	JSON

	YAML

	String

	Pretty Print

The serializer can be selected globally using the serializer configuration option, or per Publisher,
using the Publisher serializer option.

At the Publisher level, there are several new options:

	disable_security to disable the
encryption of the messages, per Publisher.

	serializer to select the Serializer.

	error_whitelist to allow only some
messages to be published, based on their
error tag.

	error_blacklist to prevent publishing
some messages, based on their error tag.

	only_raw: False to publish only RAW-type messages.

	only_unknown: False to publish only UNKNOWN-type messages.

Deprecations

Logger Interface Deprecation

As announced in the Release 0.3.0 - Codename Backsaw notes, the Logger interface has
been deprecated due to the possibility to have multiple Publishers introduced
in this release. As the Logger subsystem used to send only the partially
parsed syslog messages, you can achieve the same now using the
only_raw: False option. For example, given the following
configuration for napalm-logs < 0.4.0:

logger:
 kafka:
 send_raw: true

Beginning with this release, the equivalent configuration is:

publisher:
 - kafka:
 only_raw: true

Other Deprecations

The transport configuration option is no
longer supported. Make sure to use the
publisher option instead.

New Structured Messages

	BGP_SESSION_NOT_CONFIGURED

The following messages were already defined, now extending the list of
supported platforms:

	ISIS_NEIGHBOR_DOWN defined for junos.

	ISIS_NEIGHBOR_UP defined for junos.

Release 0.4.1

This is a minor release for Release 0.4.0 - Codename Crowbar.

New Structured Messages

The following messages were already defined, now extending the list of
supported platforms:

	INTERFACE_UP defined for eos.

	INTERFACE_DOWN defined for eos.

 nav.xhtml

 Table of Contents

 		
 Napalm-logs

 		
 Installation

 		
 Creating a Virtualenv

 		
 Installing Napalm-logs

 		
 Docker

 		
 Supported devices and configuration

 		
 Junos

 		
 Cisco IOS-XR

 		
 Arista EOS

 		
 Cisco NX-OS

 		
 Configuration Options

 		
 Command Line

 		
 address

 		
 auth-address

 		
 auth-port

 		
 certificate

 		
 config-file

 		
 config-path

 		
 device-worker-processes: 1

 		
 disable-security

 		
 extension-config-path

 		
 hwm: 1000

 		
 keyfile

 		
 listener: udp

 		
 log-file

 		
 log-format

 		
 log-level: WARNING

 		
 port: 514

 		
 publisher: zmq

 		
 publish-address: 0.0.0.0

 		
 publish-port: 49017

 		
 serializer: msgpack

 		
 transport: zmq

 		
 Config File Only Options

 		
 device_whitelist

 		
 device_blacklist

 		
 Clients

 		
 Frameworks

 		
 Salt

 		
 StackStorm

 		
 Example Scripts

 		
 Python

 		
 JavaScript (Node.js)

 		
 Structured Messages

 		
 BGP_MD5_INCORRECT

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 BGP_NEIGHBOR_STATE_CHANGED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 BGP_PEER_NOT_CONFIGURED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 BGP_PREFIX_LIMIT_EXCEEDED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 BGP_PREFIX_THRESH_EXCEEDED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 BGP_SESSION_NOT_CONFIGURED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 BPDU_BLOCK_INTERFACE_DISABLED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 CONFIGURATION_COMMIT_COMPLETED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 CONFIGURATION_COMMIT_REQUESTED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 CONFIGURATION_ERROR

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 CONFIGURATION_ROLLBACK

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 INTERFACE_DOWN

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 INTERFACE_MAC_LIMIT_REACHED

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 INTERFACE_UP

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 ISIS_NEIGHBOR_DOWN

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 ISIS_NEIGHBOR_UP

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 NTP_SERVER_UNREACHABLE

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 OSPF_NEIGHBOR_DOWN

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 OSPF_NEIGHBOR_UP

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 RAW

 		
 SYSTEM_ALARM

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 UNKNOWN

 		
 USER_ENTER_CONFIG_MODE

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 USER_LOGIN

 		
 Implemented for

 		
 Syslog message example

 		
 Structured message example

 		
 Client Authentication

 		
 Listener

 		
 Multiple listeners

 		
 Available listeners and their options

 		
 UDP

 		
 TCP

 		
 Kafka

 		
 ZeroMQ

 		
 Publisher

 		
 Multiple publishers

 		
 Available publishers and their options

 		
 CLI

 		
 HTTP

 		
 Kafka

 		
 Log

 		
 ZeroMQ

 		
 Globally available options

 		
 disable_security: False

 		
 error_whitelist: []

 		
 error_blacklist: ['RAW', 'UNKNOWN']

 		
 only_raw: False

 		
 only_unknown: False

 		
 send_raw: False

 		
 send_unknown: False

 		
 serializer: msgpack

 		
 Serializer

 		
 Multiple Publishers

 		
 Available serializers

 		
 MessagePack

 		
 JSON

 		
 YAML

 		
 Pretty Print

 		
 String

 		
 Logger

 		
 send_raw

 		
 send_unknown

 		
 The format of the syslog messages

 		
 Junos

 		
 PRI

 		
 Cisco IOS-XR

 		
 Arista EOS

 		
 Cisco NX-OS

 		
 PRI

 		
 HEADER

 		
 MSG

 		
 Development

 		
 Architecture

 		
 Listener

 		
 Server

 		
 Device

 		
 Publisher

 		
 Authenticator

 		
 Pluggable Modules

 		
 Adding a New Module

 		
 Device Profiles

 		
 YAML Profiles

 		
 Pure Python profiles

 		
 Release Notes

 		
 Latest Release

 		
 Previous Releases

_static/architecture.png
napalm-logs

_static/architecture_auth.png
napalm-logs

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/architecture.png
napalm-logs

_static/file.png

_static/logo.png

_static/up.png

_static/up-pressed.png

_images/architecture_auth.png
napalm-logs

