
napalm-logs Documentation
Release Not installed

Mircea Ulinic

Mar 17, 2018

Contents

1 Output data 3

2 Install 5

3 How to use napalm-logs 7
3.1 Basic Configuration . 7
3.2 Starting napalm-logs . 7
3.3 Further Configuration . 8
3.4 Configuration file example . 8
3.5 Starting a Client . 9

i

ii

napalm-logs Documentation, Release Not installed

Python library to parse syslog messages from network devices and produce JSON serializable Python objects, in a
vendor agnostic shape. The output objects are structured following the OpenConfig or IETF YANG models.

For example, the following syslog message from a Juniper device:

<149>Jun 21 14:03:12 vmx01 rpd[2902]: BGP_PREFIX_THRESH_EXCEEDED: 192.168.140.254
→˓(External AS 4230): Configured maximum prefix-limit threshold(140) exceeded for
→˓inet4-unicast nlri: 141 (instance master)

Will produce the following object:

{
"yang_message": {
"bgp": {

"neighbors": {
"neighbor": {
"192.168.140.254": {

"state": {
"peer_as": "4230"

},
"afi_safis": {
"afi_safi": {
"inet4": {
"state": {
"prefixes": {
"received": 141

}
},
"ipv4_unicast": {
"prefix_limit": {
"state": {
"max_prefixes": 140

}
}

}
}

}
}

}
}

}
}

},
"message_details": {
"processId": "2902",
"severity": 5,
"facility": 18,
"hostPrefix": null,
"pri": "149",
"processName": "rpd",
"host": "vmx01",
"tag": "BGP_PREFIX_THRESH_EXCEEDED",
"time": "14:03:12",
"date": "Jun 21",
"message": "192.168.140.254 (External AS 4230): Configured maximum prefix-limit

→˓threshold(140) exceeded for inet4-unicast nlri: 141 (instance master)"
},
"timestamp": 1498053792,
"facility": 18,

Contents 1

http://www.openconfig.net/
https://github.com/YangModels/yang/tree/master/standard/ietf

napalm-logs Documentation, Release Not installed

"ip": "127.0.0.1",
"host": "vmx01",
"yang_model": "openconfig-bgp",
"error": "BGP_PREFIX_THRESH_EXCEEDED",
"os": "junos",
"severity": 5

}

The library is provided with a command line program which acts as a daemon, running in background and listening to
syslog messages continuously, then publishing them over secured channels, where multiple clients can subscribe.

It is flexible to listen to the syslog messages via UDP or TCP, but also from brokers such as Apache Kafka. Similarly,
the output objects can be published via various channels such as ZeroMQ, Kafka, or remote server logging. It is also
pluggable enough to extend these capabilities and listen or publish to other services, depending on the needs.

The messages are published over a secured channel, encrypted and signed. Although the security can be disabled, this
is highly discouraged.

2 Contents

CHAPTER 1

Output data

The objects published by napalm-logs are structured data, with the hierarchy standardized in the OpenConfig and IETF
models. To check what models are used for each message type, together with examples of raw syslog messages and
sample output objects, please check the Structured Messages section.

3

napalm-logs Documentation, Release Not installed

4 Chapter 1. Output data

CHAPTER 2

Install

napalm-logs is available on PyPi and can easily be installed using the following command:

$ pip install napalm-logs

For advanced installation notes, see Instalation.

5

napalm-logs Documentation, Release Not installed

6 Chapter 2. Install

CHAPTER 3

How to use napalm-logs

3.1 Basic Configuration

Firstly you need to decide if you would like all messages between napalm-logs and the clients to be encrypted. If
you do want them to be encrypted you will require a certificate and key, which you can generate using the following
command:

openssl req -nodes -x509 -newkey rsa:4096 -keyout /var/cache/napalm-logs.key -out /
→˓var/cache/napalm-logs.crt -days 365

This will provide a self-signed certificate napalm-logs.crt and key napalm-logs.key under the /var/
cache directory.

If you do not require the messages to be encrypted you can ignore the above step and just use the command line
argument --disable-security when starting napalm-logs.

Each of the other config options come with defaults, so you can now start napalm-logs with default options and your
chosen security options.

3.2 Starting napalm-logs

Napalm-logs will need to be run with root privileges if you want it to be able to listen on udp port 514 - the standard
syslog port. If you need to run it via sudo and it has been installed in a virtual env, you will need to include the full
path. In these examples I will run as root.

To start napalm-logs using the crt and key generated above you should run the following command:

napalm-logs --certificate /var/cache/napalm-logs.crt --keyfile /var/cache/napalm-logs.
→˓key

This will start napalm-logs listening for incoming syslog messages on 0.0.0.0 port 514. It will also start to listen for
incoming client requests on 0.0.0.0 port 49017, and incoming authentication requests on 0.0.0.0 port 49018.
For more information on authentication please see the Client Authentication section.

7

napalm-logs Documentation, Release Not installed

3.3 Further Configuration

It is possible to change the address and ports that napalm-logs will use, let’s take a look at these options:

-a ADDRESS, --address=ADDRESS
Listener address. Default: 0.0.0.0

-p PORT, --port=PORT Listener bind port. Default: 514
--publish-address=PUBLISH_ADDRESS

Publisher bind address. Default: 0.0.0.0
--publish-port=PUBLISH_PORT

Publisher bind port. Default: 49017
--auth-address=AUTH_ADDRESS

Authenticator bind address. Default: 0.
→˓0.0.0
--auth-port=AUTH_PORT

Authenticator bind port. Default: 49018

There are several plugable parts to napalm-logs, two of which are the listener and the publisher. The
listener is the part that ingests the incoming syslog messages, and the publisher is the part that outputs them to the
client.

You can chose which listener to use, and which publisher to use by using the following arguments:

--listener=LISTENER Listener type. Default: udp
-t TRANSPORT, --transport=TRANSPORT

Publish transport. Default: zmq

There are more configuration options, please see Configuration Options for more details.

3.4 Configuration file example

The napalm-logs server can be started without any CLI aguments, as long as they are correctly specified under the
configuration file. The default path of the configuration file is under /etc/napalm/logs. To select a different
filepath, we can use the -c option:

napalm-logs -c /home/admin/napalm/logs

The configuration file is formatted as YAML, which makes it more human readable. In general, any configuration
option available on the CLI can be specified in the configuration file, with the mention that hyphen is replaced by
underscore, e.g.: the CLI option auth-address becomes auth_address in the napalm-logs configuration file.

address: 172.17.17.1
port: 5514
publish_address: 172.17.17.2
publish_port: 49017
transport: zmq
listener:

kafka:
bootstrap_servers:

- 10.10.10.1
- 10.10.10.2
- 10.10.10.3

The configuration above listens to the syslog messages from the Kafka bootstrap servers 10.10.10.1, 10.10.10.
2 and 10.10.10.3 then publishes the structured objects encrypted and serialized via ZeroMQ, serving them at the

8 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

address 172.17.17.2, port 49017.

Check the complete list of configuration options under Configuration Options.

3.5 Starting a Client

The client structure depends on how you start the napalm-logs daemon. If the security is disabled (via the CLI option
--disable-security or through the configuration file, where the disable_security field is set as false),
the client script is as simple as:

#!/usr/bin/env python

import zmq
import napalm_logs.utils

server_address = '127.0.0.1'
server_port = 49017

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,

port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '')

while True:
raw_object = socket.recv()
print(napalm_logs.utils.unserialize(raw_object))

Which subscribes to the ZeroMQ bus and deserializes messages using the napalm_logs.utils.unserialise
helper. The server_address and the server_port of the client represent the --publish-address and the
--publish-port of the napalm-logs daemon.

When the program is started with security enabled (recommended), the clients can use the napalm_logs.utils.
ClientAuth class, which executes the handshake to retrieve the encryption key and hex of the verification key. This
class requires the certificate (the same certificate specified when starting the napalm-logs daemon), as well as the
authentication address and port (corresponding to the --auth-address and --auth-port CLI arguments or
auth_address and auth_port configuration fields sent to the napalm-logs daemon):

#!/usr/bin/env python

import napalm_logs.utils
import zmq

server_address = '127.0.0.1'
server_port = 49017
auth_address = '127.0.0.1'
auth_port = 49018

certificate = '/var/cache/napalm-logs.crt' # This is the server crt generated earlier

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,

port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '')

3.5. Starting a Client 9

napalm-logs Documentation, Release Not installed

auth = napalm_logs.utils.ClientAuth(certificate,
address=auth_address,
port=auth_port)

while True:
raw_object = socket.recv()
decrypted = auth.decrypt(raw_object)
print(decrypted)

3.5.1 Instalation

Creating a Virtualenv

It is recommended to install all the modules required for a new program into a Virtual Environment. This ensures that
the project dependencies are kept in its own environment, making sure that you don’t have any versioning issues when
other programs have the same dependencies.

virtualenv napalm-logs

This will create a directory called napalm-logs in the directory that you are currently in.

Now you need to activate the virtualenv:

source napalm-logs/bin/activate

Installing Napalm-logs

Now install napalm-logs using pip:

pip install napalm-logs

3.5.2 Configuration Options

Here we will list all options and what they do.

Command Line

All of the command line arguments can also be added to a config file.

address

The IP address to use to listen for all incoming syslog messages.

Default: 0.0.0.0.

CLI usage example:

$ napalm-logs -a 172.17.17.1
$ napalm-logs --address 172.17.17.1

Configuration file example:

10 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

address: 172.17.17.1

auth-address

The IP address to listen on for incoming authorisation requests.

Default: 0.0.0.0.

CLI usage example:

$ napalm-logs --auth-address 172.17.17.2

Configuration file example:

auth_address: 172.17.17.2

auth-port

The port to listen on for incoming authorisation requests.

Default: 49018

CLI usgae example:

$ napalm-logs --auth-port 2022

Configuration file example:

auth_port: 2022

certificate

The certificate to use for the authorisation process. This will be presented to incoming clients during the TLS hand-
shake.

CLI usage example:

$ napalm-logs --certificate /var/cache/server.crt

Configuration file example:

certificate: /var/cache/server.crt

config-file

Specifies the file where further configuration options can be found.

Default: /etc/napalm/logs.

CLI usage example:

$ napalm-logs -c /srv/napalm-logs
$ napalm-logs --config-file /srv/napalm-logs

3.5. Starting a Client 11

napalm-logs Documentation, Release Not installed

config-path

The directory path where device configuration files can be found. These are the files that contain the syslog message
format for each device.

CLI usage example:

$ napalm-logs --config-path /home/admin/napalm-logs/

Configuration file example:

config_path: /home/admin/napalm-logs/

disable-security

If set no encryption or message signing will take place. All messages will be in plain text. The client will not be able
to verify that a message was generated by the server.

It is not recommended to use this in a production environment.

CLI usage example:

$ napalm-logs --disable-security

Configuration file example:

disable_security: true

extension-config-path

A path where you can specify further device configuration files that contain the syslog message format for devices.

CLI usage example:

$ napalm-logs --extension-config-path /home/admin/napalm-logs/

Configuration file example:

extension_config_path: /home/admin/napalm-logs/

keyfile

The private key for the certificate specified by the certificate option. This will be used to generate a key to
encrypt messages.

CLI usage example:

$ napalm-logs --keyfile /var/cache/server.key

Configuration file example:

keyfile: /var/cache/server.key

12 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

listener

The module to use when listening for incoming syslog messages. For more details, see Listener.

Default: udp.

CLI usage example:

$ napalm-logs --listener kafka

Configuration file example:

listener: kafka

log-file

The file where to send log messages.

If you want log messages to be outputted to the command line you can specify --log-file cli.

Default: /var/log/napalm/logs.

CLI usage example:

$ napalm-logs --log-file /var/log/napalm-logs

Configuration file example:

log_file: /var/log/napalm-logs

log-format

The format of the log messages.

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s.

Example: 2017-07-03 11:54:25,300,301 [napalm_logs.listener.tcp][INFO] Stopping
listener process

CLI usage example:

$ napalm-logs --log-format '%(asctime)s,%(msecs)03.0f [%(levelname)] %(message)s'

Configuration file example:

log_format: '%(asctime)s,%(msecs)03.0f [%(levelname)] %(message)s'

log-level

The level at which to log messages. Possible options are CRITIAL, ERROR, WARNING, INFO, DEBUG.

Default: WARNING.

CLI usage example:

3.5. Starting a Client 13

napalm-logs Documentation, Release Not installed

$ napalm-logs -l debug
$ napalm-logs --log-level info

Configuration file example:

log_level: info

port

This can be assigned using -p

The port to use to listen for all incoming syslog messages.

Default: 514.

CLI usage example:

$ napalm-logs -p 1024
$ napalm-logs --port 1024

Configuration file example:

port: 1024

publish-address

The IP address to use to output the processed message.

Default: 0.0.0.0.

CLI usage example:

$ napalm-logs --publish-address 172.17.17.3

Configuration file example:

publish_address: 172.17.17.3

publish-port

The port to use to output the processes message.

Default: 49017.

CLI usage example:

$ napalm-logs --publish-port 2048

Configuration file example:

publish_port: 2048

14 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

transport

The module to use to output the processed message information. For more details, see Publisher.

Default: zmq (ZeroMQ).

CLI usage example:

$ napalm-logs -t kafka
$ napalm-logs --transport kafka
$ napalm-logs --publisher kafka

Configuration file example:

transport: kafka

Or:

publisher: kafka

Config File Only Options

The options to be used inside of the pluggable modules are not provided via the command line, they need to be
provided in the config file.

device_whitelist

List of platforms to be supported. By default this is an empty list, thus everything will be accepted. This is useful to
control the number of sub-processes started.

Example:

device_whitelist:
- junos
- iosxr

device_blacklist

List of platforms to be ignored. By default this list is empty, thus nothing will be ignored. This is also useful to control
the number of sub-processes started.

Example:

device_blacklist:
- eos

3.5.3 Structured Messages

Each message has a certain identification tag which is unique and cross-platform.

For example, the following syslog message:

3.5. Starting a Client 15

napalm-logs Documentation, Release Not installed

<28>Jul 4 13:40:55 vmx2 rpd[2942]: BGP_PREFIX_LIMIT_EXCEEDED: 10.0.0.31 (Internal AS
→˓65001): Configured maximum prefix-limit(1) exceeded for inet-unicast nlri: 7
→˓(instance master)

napalm-logs identifies that it was produced by a Junos device and assigns the error tag
BGP_PREFIX_LIMIT_EXCEEDED and then will try to map the information into the OpenConfig model
openconfig_bgp:

{
"yang_message": {

"bgp": {
"neighbors": {

"neighbor": {
"192.168.140.254": {

"state": {
"peer_as": "65001"

},
"afi_safis": {
"afi_safi": {

"inet4": {
"state": {

"prefixes": {
"received": "141"

}
},
"ipv4_unicast": {

"prefix_limit": {
"state": {

"max_prefixes": "140"
}

}
}

}
}

}
}

}
}

}
},
"message_details": {

"processId": "2902",
"hostPrefix": null,
"pri": "149",
"processName": "rpd",
"host": "vmx01",
"tag": "BGP_PREFIX_THRESH_EXCEEDED",
"time": "14:03:12",
"date": "Jun 21",
"message": "192.168.140.254 (External AS 65001): Configured maximum prefix-

→˓limit threshold(140) exceeded for inet4-unicast nlri: 141 (instance master)"
},
"timestamp": 1498050192,
"facility": 18,
"ip": "127.0.0.1",
"host": "vmx01",
"yang_model": "openconfig_bgp",
"error": "BGP_PREFIX_THRESH_EXCEEDED",

16 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

"os": "junos",
"severity": 5

}

Under this section, we present the possible error tags, together with their corresponding YANG model and examples.

BGP_MD5_INCORRECT

This error tag corresponds to syslog messages notifying that the authentication for a BGP neighbor is incorrect.

Maps to the openconfig-bgp YANG model.

Implemented for

• junos

Syslog message example

<4>Jul 20 21:23:00 vmx01 /kernel: tcp_auth_ok: Packet from 192.168.140.254:61664
→˓wrong MD5 digest

Structured message example

{
"error": "BGP_MD5_INCORRECT",
"facility": 0,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 0,
"host": "vmx01",
"hostPrefix": null,
"message": "Packet from 192.168.140.254:61664 wrong MD5 digest",
"pri": "4",
"processId": null,
"processName": "kernel",
"severity": 4,
"tag": "tcp_auth_ok",
"time": "21:23:00"

},
"os": "junos",
"severity": 4,
"timestamp": 1500585780,
"yang_message": {

"bgp": {
"neighbors": {

"neighbor": {
"192.168.140.254": {

"state": {
"session_state": "CONNECT"

}

3.5. Starting a Client 17

napalm-logs Documentation, Release Not installed

}
}

}
}

},
"yang_model": "openconfig-bgp"

}

BGP_NEIGHBOR_STATE_CHANGED

This error tag corresponds to syslog messages notifying that the configured bgp neighbor has changed state

Maps to the openconfig-bgp YANG model.

Implemented for

• junos

Syslog message example

<28>Jun 21 14:03:12 vmx01 rpd[2902]: RPD_BGP_NEIGHBOR_STATE_CHANGED: BGP peer 1.1.1.
→˓1 (External AS 2222) changed state from OpenConfirm to Idle (event TransportError)
→˓(instance master)

Structured message example

{
"error": "BGP_NEIGHBOR_STATE_CHANGED",
"facility": 3,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jun 21",
"facility": 3,
"host": "vmx01",
"hostPrefix": null,
"message": "BGP peer 1.1.1.1 (External AS 2222) changed state from OpenConfirm

→˓to Idle (event TransportError) (instance master)",
"pri": "28",
"processId": "2902",
"processName": "rpd",
"severity": 4,
"tag": "RPD_BGP_NEIGHBOR_STATE_CHANGED",
"time": "14:03:12"

},
"os": "junos",
"severity": 4,
"timestamp": 1498053792,
"yang_message": {

"bgp": {
"neighbors": {

18 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

"neighbor": {
"1.1.1.1": {

"state": {
"peer_as": "2222",
"session-state": "IDLE",
"session-state-change-event": "TransportError",
"session-state-old": "OPEN_CONFIRM"

}
}

}
}

}
},
"yang_model": "openconfig-bgp"

}

BGP_PEER_NOT_CONFIGURED

This error tag corresponds to syslog messages notifying that the configured peer sent a BGP notification code 6 subcode
5, which idicates that the peer does not have the session configured.

Maps to the openconfig-bgp YANG model.

Implemented for

• junos

Syslog message example

<87>Jul 5 05:52:44 vmx01 rpd[1848]: bgp_read_message:2764: NOTIFICATION received
→˓from 1.2.3.4 (External AS 1234): code 6 (Cease) subcode 5 (Connection Rejected)

Structured message example

{
"error": "BGP_PEER_NOT_CONFIGURED",
"facility": 10,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 5",
"facility": 10,
"host": "vmx01",
"hostPrefix": null,
"message": "2764: NOTIFICATION received from 1.2.3.4 (External AS 1234): code 6

→˓(Cease) subcode 5 (Connection Rejected)",
"pri": "87",
"processId": "1848",
"processName": "rpd",
"severity": 7,
"tag": "bgp_read_message",

3.5. Starting a Client 19

napalm-logs Documentation, Release Not installed

"time": "05:52:44"
},
"os": "junos",
"severity": 7,
"timestamp": 1499233964,
"yang_message": {

"bgp": {
"neighbors": {

"neighbor": {
"1.2.3.4": {

"state": {
"peer_as": "1234",
"session_state": "ACTIVE"

}
}

}
}

}
},
"yang_model": "openconfig-bgp"

}

BGP_PREFIX_LIMIT_EXCEEDED

This error tag corresponds to syslog messages notifying that the prefix limit for a BGP neighbor has been exceeded,
without tearing it down.

Maps to the openconfig-bgp YANG model.

Implemented for

• junos

• eos

Syslog message example

<28>Jul 20 21:41:37 vmx01 rpd[2965]: BGP_PREFIX_LIMIT_EXCEEDED: 192.168.140.254
→˓(External AS 65001): Configured maximum prefix-limit(27) exceeded for inet-unicast
→˓nlri: 28 (instance master)

Structured message example

{
"error": "BGP_PREFIX_LIMIT_EXCEEDED",
"facility": 3,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 3,
"host": "vmx01",

20 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

"hostPrefix": null,
"message": "192.168.140.254 (External AS 65001): Configured maximum prefix-

→˓limit(27) exceeded for inet-unicast nlri: 28 (instance master)",
"pri": "28",
"processId": "2965",
"processName": "rpd",
"severity": 4,
"tag": "BGP_PREFIX_LIMIT_EXCEEDED",
"time": "21:41:37"

},
"os": "junos",
"severity": 4,
"timestamp": 1500586897,
"yang_message": {

"bgp": {
"neighbors": {

"neighbor": {
"192.168.140.254": {

"afi_safis": {
"afi_safi": {

"inet": {
"ipv4_unicast": {

"prefix_limit": {
"state": {

"max_prefixes": 27
}

}
},
"state": {

"prefixes": {
"received": 28

}
}

}
}

},
"state": {

"peer_as": "65001"
}

}
}

}
}

},
"yang_model": "openconfig-bgp"

}

BGP_PREFIX_THRESH_EXCEEDED

This error tag corresponds to syslog messages notifying that the prefix limit threshhold for a BGP neighbor has been
exceeded and the neighbor has been torn down.

Maps to the openconfig-bgp YANG model.

3.5. Starting a Client 21

napalm-logs Documentation, Release Not installed

Implemented for

• iosxr

• junos

Syslog message example

<149>2647599: vmx01 RP/0/RSP1/CPU0:Mar 28 15:08:30.941 UTC: bgp[1051]: %ROUTING-BGP-5-
→˓MAXPFX : No. of IPv4 Unicast prefixes received from 1.2.3.4 has reached 94106, max
→˓125000

Structured message example

{
"error": "BGP_PREFIX_THRESH_EXCEEDED",
"facility": 18,
"host": "vmx01 ",
"ip": "127.0.0.1",
"message_details": {

"date": "Mar 28",
"facility": 18,
"host": "vmx01 ",
"message": ": No. of IPv4 Unicast prefixes received from 1.2.3.4 has reached

→˓94106, max 125000",
"messageId": "2647599",
"milliseconds": ".941",
"nodeId": "RP/0/RSP1/CPU0",
"pri": "149",
"processId": "1051",
"processName": "bgp",
"severity": 5,
"tag": "ROUTING-BGP-5-MAXPFX",
"time": "15:08:30",
"timeZone": "UTC"

},
"os": "iosxr",
"severity": 5,
"timestamp": 1490713710,
"yang_message": {

"bgp": {
"neighbors": {

"neighbor": {
"1.2.3.4": {

"afi_safis": {
"afi_safi": {

"inet": {
"ipv4_unicast": {

"prefix_limit": {
"state": {

"max_prefixes": 125000
}

}
},

22 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

"state": {
"prefixes": {

"received": 94106
}

}
}

}
}

}
}

}
}

},
"yang_model": "openconfig-bgp"

}

BPDU_BLOCK_INTERFACE_DISABLED

This error tag corresponds to syslog messages notifying that the configured interface has been disabled due to a bpdu
block

Maps to the openconfig-interface YANG model.

Implemented for

• junos

Syslog message example

<25>Jun 21 14:03:12 vmx01 eswd[2902]: ESWD_BPDU_BLOCK_ERROR_DISABLED: ge-0/0/17.0:
→˓bpdu-block disabled port

Structured message example

{
"error": "BPDU_BLOCK_INTERFACE_DISABLED",
"facility": 3,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jun 21",
"facility": 3,
"host": "vmx01",
"hostPrefix": null,
"message": "ge-0/0/17.0: bpdu-block disabled port",
"pri": "25",
"processId": "2902",
"processName": "eswd",
"severity": 1,
"tag": "ESWD_BPDU_BLOCK_ERROR_DISABLED",
"time": "14:03:12"

3.5. Starting a Client 23

napalm-logs Documentation, Release Not installed

},
"os": "junos",
"severity": 1,
"timestamp": 1498053792,
"yang_message": {

"interfaces": {
"interface": {

"ge-0/0/17.0": {
"state": {

"oper_status": "DOWN"
}

}
}

}
},
"yang_model": "openconfig-interface"

}

CONFIGURATION_COMMIT_COMPLETED

This error tag corresponds to syslog messages notifying that the a configuration commit is complete

There is no YANG model available yet to map this class of messages. Please check the Structured message example
section to see the structure.

Implemented for

• junos

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_COMMIT_PROGRESS: Commit operation in
→˓progress: commit complete

Structured message example

{
"error": "CONFIGURATION_COMMIT_COMPLETED",
"facility": 23,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 23,
"host": "vmx01",
"hostPrefix": null,
"message": "Commit operation in progress: commit complete",
"pri": "189",
"processId": "7729",
"processName": "mgd",
"severity": 5,

24 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

"tag": "UI_COMMIT_PROGRESS",
"time": "21:44:00"

},
"os": "junos",
"severity": 5,
"timestamp": 1500587040,
"yang_message": {

"system": {
"operations": {

"commit_complete": true
}

}
},
"yang_model": "NO_MODEL"

}

CONFIGURATION_COMMIT_REQUESTED

This error tag corresponds to syslog messages notifying that the a user has requested a configuration commit

There is no YANG model available yet to map this class of messages. Please check the Structured message example
section to see the structure.

Implemented for

• junos

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_COMMIT: User 'luke' requested 'commit'
→˓operation (comment: hello)

Structured message example

{
"error": "CONFIGURATION_COMMIT_REQUESTED",
"facility": 23,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 23,
"host": "vmx01",
"hostPrefix": null,
"message": "User 'luke' requested 'commit' operation (comment: hello)",
"pri": "189",
"processId": "7729",
"processName": "mgd",
"severity": 5,
"tag": "UI_COMMIT",
"time": "21:44:00"

3.5. Starting a Client 25

napalm-logs Documentation, Release Not installed

},
"os": "junos",
"severity": 5,
"timestamp": 1500587040,
"yang_message": {

"users": {
"user": {

"luke": {
"action": {

"comment": "hello",
"requested_commit": true

}
}

}
}

},
"yang_model": "NO_MODEL"

}

CONFIGURATION_ERROR

This error tag corresponds to syslog messages notifying that there is an error in the configuration

There is no YANG model available yet to map this class of messages. Please check the Structured message example
section to see the structure.

Implemented for

• junos

Syslog message example

<187>Jul 20 21:44:00 vmx01 mgd[7729]: UI_CONFIGURATION_ERROR: Process: mgd, path:
→˓[edit vlans VLANTEST l3-interface], statement: l3-interface vlan.666, Interface
→˓must already be defined under [edit interfaces]

Structured message example

{
"error": "CONFIGURATION_ERROR",
"facility": 23,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 23,
"host": "vmx01",
"hostPrefix": null,
"message": "Process: mgd, path: [edit vlans VLANTEST l3-interface], statement:

→˓l3-interface vlan.666, Interface must already be defined under [edit interfaces]",
"pri": "187",

26 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

"processId": "7729",
"processName": "mgd",
"severity": 3,
"tag": "UI_CONFIGURATION_ERROR",
"time": "21:44:00"

},
"os": "junos",
"severity": 3,
"timestamp": 1500587040,
"yang_message": {

"system": {
"configuration": {

"error": true,
"message": "Interface must already be defined under [edit interfaces]",
"path": "[edit vlans VLANTEST l3-interface]",
"statement": "l3-interface vlan.666"

}
}

},
"yang_model": "NO_MODEL"

}

CONFIGURATION_ROLLBACK

This error tag corresponds to syslog messages notifying that the a user has requested a configuration rollback

There is no YANG model available yet to map this class of messages. Please check the Structured message example
section to see the structure.

Implemented for

• junos

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_LOAD_EVENT: User 'luke' is performing a
→˓'rollback'

Structured message example

{
"error": "CONFIGURATION_ROLLBACK",
"facility": 23,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 23,
"host": "vmx01",
"hostPrefix": null,
"message": "User 'luke' is performing a 'rollback'",

3.5. Starting a Client 27

napalm-logs Documentation, Release Not installed

"pri": "189",
"processId": "7729",
"processName": "mgd",
"severity": 5,
"tag": "UI_LOAD_EVENT",
"time": "21:44:00"

},
"os": "junos",
"severity": 5,
"timestamp": 1500587040,
"yang_message": {

"users": {
"user": {

"luke": {
"action": {

"configuration_rollback": true
}

}
}

}
},
"yang_model": "NO_MODEL"

}

INTERFACE_DOWN

Maps to the openconfig-interfaces YANG model.

Implemented for

• junos

Syslog message example

<28>Jul 20 21:45:59 vmx01 mib2d[2424]: SNMP_TRAP_LINK_DOWN: ifIndex 502,
→˓ifAdminStatus down(2), ifOperStatus down(2), ifName xe-0/0/0

Structured message example

{
"error": "INTERFACE_DOWN",
"facility": 3,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 3,
"host": "vmx01",
"hostPrefix": null,
"message": "ifIndex 502, ifAdminStatus down(2), ifOperStatus down(2), ifName xe-

→˓0/0/0",

28 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

"pri": "28",
"processId": "2424",
"processName": "mib2d",
"severity": 4,
"tag": "SNMP_TRAP_LINK_DOWN",
"time": "21:45:59"

},
"os": "junos",
"severity": 4,
"timestamp": 1500587159,
"yang_message": {

"interfaces": {
"interface": {

"xe-0/0/0": {
"state": {

"admin_status": "DOWN",
"oper_status": "DOWN"

}
}

}
}

},
"yang_model": "openconfig-interfaces"

}

INTERFACE_MAC_LIMIT_REACHED

This error tag corresponds to syslog messages notifying that the configured interface mac learning limit has been
reached

Maps to the openconfig-interface YANG model.

Implemented for

• junos

Syslog message example

<149>Jun 21 14:03:12 vmx01 l2ald[2902]: L2ALD_MAC_LIMIT_REACHED_IF: Limit on learned
→˓MAC addresses reached for ge-1/0/23.0; current count is 3

Structured message example

{
"error": "INTERFACE_MAC_LIMIT_REACHED",
"facility": 18,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jun 21",
"facility": 18,

3.5. Starting a Client 29

napalm-logs Documentation, Release Not installed

"host": "vmx01",
"hostPrefix": null,
"message": "Limit on learned MAC addresses reached for ge-1/0/23.0; current

→˓count is 3",
"pri": "149",
"processId": "2902",
"processName": "l2ald",
"severity": 5,
"tag": "L2ALD_MAC_LIMIT_REACHED_IF",
"time": "14:03:12"

},
"os": "junos",
"severity": 5,
"timestamp": 1498053792,
"yang_message": {

"interfaces": {
"interface": {

"ge-1/0/23.0": {
"ethernet": {

"state": {
"learned-mac-addresses": "3"

}
}

}
}

}
},
"yang_model": "openconfig-interface"

}

NTP_SERVER_UNREACHABLE

This message is sent when the synchronization is lost with an NTP server. According to the openconfig-system
YANG model, the distinction between NTP peers and servers is made via the association-type field from the
config container.

Maps to the openconfig-system YANG model.

Implemented for

• iosxr

• junos

Syslog message example

<99>2647599: device3 RP/0/RSP0/CPU0:Aug 21 09:39:14.747 UTC: ntpd[262]: %IP-IP_NTP-5-
→˓SYNC_LOSS : Synchronization lost : 172.17.17.1 : The association was removed

30 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

Structured message example

{
"error": "NTP_SERVER_UNREACHABLE",
"facility": 12,
"host": "device3 ",
"ip": "127.0.0.1",
"message_details": {

"date": "Aug 21",
"facility": 12,
"host": "device3 ",
"message": ": Synchronization lost : 172.17.17.1 : The association was removed",
"messageId": "2647599",
"milliseconds": ".747",
"nodeId": "RP/0/RSP0/CPU0",
"pri": "99",
"processId": "262",
"processName": "ntpd",
"severity": 3,
"tag": "IP-IP_NTP-5-SYNC_LOSS",
"time": "09:39:14",
"timeZone": "UTC"

},
"os": "iosxr",
"severity": 3,
"timestamp": 1503308354,
"yang_message": {

"system": {
"ntp": {

"servers": {
"server": {

"172.17.17.1": {
"state": {

"stratum": 16
}

}
}

}
}

}
},
"yang_model": "openconfig-system"

}

OSPF_NEIGHBOR_DOWN

This error tag corresponds to syslog messages notifying that the configured ospf neighbor has changed state from Full

Maps to the openconfig-ospf YANG model.

Implemented for

• junos

3.5. Starting a Client 31

napalm-logs Documentation, Release Not installed

Syslog message example

<29>Jun 21 14:03:12 vmx01 rpd[2902]: RPD_OSPF_NBRDOWN: OSPF neighbor 1.1.1.1 (realm
→˓ospf-v2 ge-0/0/0.0 area 0.0.0.0) state changed from Full to Down due to
→˓InActiveTimer (event reason: BFD session timed out and neighbor was declared dead)

Structured message example

{
"error": "OSPF_NEIGHBOR_DOWN",
"facility": 3,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jun 21",
"facility": 3,
"host": "vmx01",
"hostPrefix": null,
"message": "OSPF neighbor 1.1.1.1 (realm ospf-v2 ge-0/0/0.0 area 0.0.0.0) state

→˓changed from Full to Down due to InActiveTimer (event reason: BFD session timed out
→˓and neighbor was declared dead)",

"pri": "29",
"processId": "2902",
"processName": "rpd",
"severity": 5,
"tag": "RPD_OSPF_NBRDOWN",
"time": "14:03:12"

},
"os": "junos",
"severity": 5,
"timestamp": 1498053792,
"yang_message": {

"network-instances": {
"network-instance": {

"global": {
"protocols": {

"protocol": {
"ospf": {

"ospfv2": {
"areas": {

"area": {
"0.0.0.0": {

"interfaces": {
"interface": {

"ge-0/0/0.0": {
"neighbors": {

"neighbor": {
"1.1.1.1": {

"state": {
"adjacency-

→˓state": "DOWN",
"adjacency-

→˓state-change-reason": "INACTIVE_TIMER",
"adjacency-

→˓state-change-reason-message": "BFD session timed out and neighbor was declared dead"
}

32 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

},
"yang_model": "openconfig-ospf"

}

OSPF_NEIGHBOR_UP

This error tag corresponds to syslog messages notifying that the configured ospf neighbor has changed to a higher state

Maps to the openconfig-ospf YANG model.

Implemented for

• junos

Syslog message example

<29>Jun 21 14:03:12 vmx01 rpd[2902]: RPD_OSPF_NBRUP: OSPF neighbor 1.1.1.1 (realm
→˓ospf-v2 ge-0/0/0.0 area 0.0.0.0) state changed from Init to 2Way due to 2WayRcvd
→˓(event reason: two way received)

Structured message example

{
"error": "OSPF_NEIGHBOR_UP",
"facility": 3,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jun 21",
"facility": 3,
"host": "vmx01",
"hostPrefix": null,
"message": "OSPF neighbor 1.1.1.1 (realm ospf-v2 ge-0/0/0.0 area 0.0.0.0) state

→˓changed from Init to 2Way due to 2WayRcvd (event reason: two way received)",
"pri": "29",

3.5. Starting a Client 33

napalm-logs Documentation, Release Not installed

"processId": "2902",
"processName": "rpd",
"severity": 5,
"tag": "RPD_OSPF_NBRUP",
"time": "14:03:12"

},
"os": "junos",
"severity": 5,
"timestamp": 1498053792,
"yang_message": {

"network-instances": {
"network-instance": {

"global": {
"protocols": {

"protocol": {
"ospf": {

"ospfv2": {
"areas": {

"area": {
"0.0.0.0": {

"interfaces": {
"interface": {

"ge-0/0/0.0": {
"neighbors": {

"neighbor": {
"1.1.1.1": {

"state": {
"adjacency-

→˓state": "TWO_WAY",
"adjacency-

→˓state-change-reason": "TWO_WAY_RECEIVED",
"adjacency-

→˓state-change-reason-message": "two way received"
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

},
"yang_model": "openconfig-ospf"

}

34 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

RAW

This error tag is sent when napalm-logs was able to identify the operating system, but there was no tag matching
the syslog message. Therefore, the output object will contain the syslog message parts, without further processing.
By default, these messages are not published; they need to be explicitly enabled using the send_raw option for the
publisher.

Note: These messages are not recommended for production use. They can be used as temporary helpers, at most.
The right approach is appending a new message matcher inside the corresponding device profile. See Device Profiles.

Note: The syslog message parts under the message_details key are device-specific, as designed inside the
profiler.

Example:

{
"message_details": {
"processId": null,
"hostPrefix": null,
"pri": "37",
"processName": "sshd",
"host": "vmx1",
"tag": "SSHD_LOGIN_FAILED",
"time": "10:32:03",
"date": "Jul 10",
"message": "Login failed for user 'root' from host '61.177.172.56'"

},
"ip": "172.17.17.1",
"host": "vmx1",
"timestamp": 1499682723,
"os": "junos",
"model_name": "raw",
"error": "RAW",
"facility": 4,
"severity": 5

}

SYSTEM_ALARM

This error tag corresponds to syslog messages notifying that there has been a change in status for an alarm. There are
multiple entries for this error. The reason being that the exact component name can be contained in the reason section,
so has to be extracted via a specific regex.

Maps to the ietf-hardware YANG model.

Implemented for

• junos

3.5. Starting a Client 35

napalm-logs Documentation, Release Not installed

Syslog message example

<28>Jul 8 23:04:13 vmx01 alarmd[2449]: Alarm set: Pwr supply color=YELLOW,
→˓class=CHASSIS, reason=PEM 1 Fan Failed

Structured message example

{
"error": "SYSTEM_ALARM",
"facility": 3,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 8",
"facility": 3,
"host": "vmx01",
"hostPrefix": null,
"message": "Pwr supply color=YELLOW, class=CHASSIS, reason=PEM 1 Fan Failed",
"pri": "28",
"processId": "2449",
"processName": "alarmd",
"severity": 4,
"tag": "Alarm set",
"time": "23:04:13"

},
"os": "junos",
"severity": 4,
"timestamp": 1499555053,
"yang_message": {

"hardware-state": {
"component": {

"supply": {
"class": "CHASSIS",
"name": "supply",
"state": {

"alarm-reason": "PEM 1 Fan Failed",
"alarm-state": 4

}
}

}
}

},
"yang_model": "ietf-hardware"

}

UNKNOWN

This error tag is sent when napalm-logs was unable to identify the operating system. By default, these messages are
not published; they need to be explicitly enabled using the send_unknown option for the publisher.

Note: These messages are not recommended for production use. They can be used as temporary helpers, at most. The
right approach is writing a new device profile matching the syslog message and generating the structured messages as

36 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

required. See Device Profiles.

Example:

{
"message_details": {

"message": "<28>Jul 10 10:32:00 vmx1 inetd[2397]: /usr/sbin/sshd[89736]:
→˓exited, status 255\n"
},
"timestamp": 1501685287,
"ip": "127.0.0.1",
"host": "unknown",
"error": "UNKNOWN",
"os": "unknown",
"model_name": "unknown"

}

USER_ENTER_CONFIG_MODE

There is no YANG model available yet to map this class of messages. Please check the Structured message example
section to see the structure.

Implemented for

• junos

Syslog message example

<189>Jul 20 21:44:00 vmx01 mgd[7729]: UI_DBASE_LOGIN_EVENT: User 'luke' entering
→˓configuration mode

Structured message example

{
"error": "USER_ENTER_CONFIG_MODE",
"facility": 23,
"host": "vmx01",
"ip": "127.0.0.1",
"message_details": {

"date": "Jul 20",
"facility": 23,
"host": "vmx01",
"hostPrefix": null,
"message": "User 'luke' entering configuration mode",
"pri": "189",
"processId": "7729",
"processName": "mgd",
"severity": 5,
"tag": "UI_DBASE_LOGIN_EVENT",
"time": "21:44:00"

},

3.5. Starting a Client 37

napalm-logs Documentation, Release Not installed

"os": "junos",
"severity": 5,
"timestamp": 1500587040,
"yang_message": {

"users": {
"user": {

"luke": {
"action": {

"enter_config_mode": true
}

}
}

}
},
"yang_model": "NO_MODEL"

}

USER_LOGIN

Match messages AUTHPRIV-6-SYSTEM_MSG from NX-OS.

Message example:

sw01.bjm01: 2017 Jul 26 14:42:46 UTC: %AUTHPRIV-6-SYSTEM_MSG: pam_unix(dcos_
→˓sshd:session): session opened for user luke by (uid=0) - dcos_sshd[12977] # noqa

Output example:

{
"users": {
"user": {

"luke": {
"action": {
"login": true

},
"uid": 0

}
}

}
}

There is no YANG model available yet to map this class of messages. Please check the Structured message example
section to see the structure.

Implemented for

• nxos

Syslog message example

<190>sw01.pdx01: 2017 Jul 28 14:42:46 UTC: %AUTHPRIV-6-SYSTEM_MSG: pam_unix(dcos_
→˓sshd:session): session opened for user luke by (uid=0) - dcos_sshd[12977]

38 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

Structured message example

{
"error": "USER_LOGIN",
"facility": 23,
"host": "sw01.pdx01",
"ip": "127.0.0.1",
"message_details": {

"date": "2017 Jul 28",
"facility": 23,
"host": "sw01.pdx01",
"message": "pam_unix(dcos_sshd:session): session opened for user luke by

→˓(uid=0) - dcos_sshd[12977]",
"pri": "190",
"severity": 6,
"tag": "AUTHPRIV-6-SYSTEM_MSG",
"time": "14:42:46",
"timeZone": "UTC"

},
"os": "nxos",
"severity": 6,
"timestamp": 1501252966,
"yang_message": {

"users": {
"user": {

"luke": {
"action": {

"login": true
},
"uid": 0

}
}

}
},
"yang_model": "NO_MODEL"

}

3.5.4 Client Authentication

With the event-driven automation in mind, napalm-logs has been designed to be safe and securely publish the outgoing
messages. As these messages may trigger automatic configurationc changes, or simply notifications, we must ensure
their authenticity. For these reasons, napalm-logs encrypts and signs the outgoing messages.

Although highly discouraged, the user has the possibility to disable the security at their own risk.

Whether the security is enabled or disabled, the messages published are binary serialized using MessagePack.

The clients that connect to the publisher interface (see Publisher), have to retrieve the encryption and the signing
key from the napalm-logs daemon. In the core architecture of napalm-logs, when the security is not turned off,
another separate process is started, which listens to connections and exchanges the keys with the client. The exchange
is realised over a secure SSL socket, using the certificate and the key configured when starting the daemon (see
certificate and keyfile). The authentication subsystem listens on a socket, whose configuration details can be set using
the auth-address and auth-port options (either from the CLI, or in the configuration file).

The client, before being able to decrypt the messages received from the napalm-logs publisher, must receive the keys
from the authenticator sub-system.

3.5. Starting a Client 39

http://msgpack.org/

napalm-logs Documentation, Release Not installed

In order to ease the authentication process on the client side, we have included a couple of helpers, making the key
exchange and decryption easy:

#!/usr/bin/env python

import zmq # when using the ZeroMQ publisher
import napalm_logs.utils

server_address = '127.0.0.1' # IP
server_port = 49017 # Port for the napalm-logs publisher interface
auth_address = '127.0.0.1' # IP
auth_port = 49018 # Port for the authentication interface

certificate = '/var/cache/napalm-logs.crt' # This is the server crt generated earlier

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,

port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '') # subscribe to the napalm-logs publisher

auth = napalm_logs.utils.ClientAuth(certificate,
address=auth_address,
port=auth_port) # authenticate to napalm-logs

while True:
raw_object = socket.recv() # receive the encrypted object
decrypted = auth.decrypt(raw_object) # check the siganture, decrypt and

→˓deserialize
print(decrypted)

When the security is disabled, the clients no longer need to authenticate and receive the keys, however they need
to bear in mind to deserialize the messages. We have also included a helper for that: napalm_logs.utils.
unserialize, see the example below:

#!/usr/bin/env python

import zmq # when using the ZeroMQ publisher
import napalm_logs.utils

server_address = '127.0.0.1' # IP
server_port = 49017 # Port for the napalm-logs publisher interface

context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect('tcp://{address}:{port}'.format(address=server_address,

port=server_port))
socket.setsockopt(zmq.SUBSCRIBE, '') # subscribe to the napalm-logs publisher

while True:
raw_object = socket.recv() # binary object
print(napalm_logs.utils.unserialize(raw_object)) # deserialize

3.5.5 Listener

The listener subsystem is a pluggable interface for inbound unstructured syslog messages. The messages can be
received directly from the network devices, via UDP or TCP, or from other third parties, such as brokers, e.g. ZeroMQ,

40 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

Kafka, etc., depending on the architecture of the network. The default listener is UDP.

From the command line, the listener can be selected using the --listener option, e.g.:

$ napalm-logs --listener tcp

From the configuration file, the listener can be specified using the listener option, eventually with several options.
The options depend on the nature of the listener.

Example: listener configuration using the default configuration

listener: tcp

Example: listener configuration using custom options

listener:
tcp:
buffer_size: 2048
max_clients: 100

Note: The IP Address / port for the listener be specified using the address and port configuration options.

Available listeners and their options

UDP

Receive the unstructured syslog messages over UDP.

Available options:

buffer_size: 1024

The socket buffer size, in bytes.

Example:

listener:
udp:
buffer_size: 2048

TCP

Receive the unstructured syslog messages over TCP.

Available options:

buffer_size: 1024

The socket buffer size, in bytes.

Example:

3.5. Starting a Client 41

napalm-logs Documentation, Release Not installed

listener:
tcp:
buffer_size: 2048

socket_timeout: 60

The socket timeout, in seconds.

Example:

listener:
tcp:
socket_timeout: 5

max_clients: 5

The maximum number of parallel connections to accept.

Example:

listener:
tcp:
max_clients: 100

Kafka

Receive unstructured syslog messages from Apache Kafka.

Available options:

bootstrap_servers

host[:port] string (or list of host[:port] strings) that the consumer should contact to bootstrap initial cluster
metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a
Metadata API Request.

Example:

listener:
kafka:
bootstrap_servers:

- kk1.brokers.example.org
- kk1.brokers.example.org:1234
- 192.168.0.1
- 192.168.0.2:5678

listener:
kafka:
bootstrap_servers: kk1.brokers.example.org:1234

42 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

group_id: napalm-logs

The bootstrap servers group ID name.

Example:

listener:
kafka:
group_id: napalm-logs-servers

topic: syslog.net

The topic to subscribe to and receive messages from.

Example:

listener:
kafka:
topic: napalm-logs-in

3.5.6 Publisher

The publisher subsystem is a pluggable interface for outbound messages, structured following the OpenConfig / IETF
YANG models. The messages can be published over a variety of services – see Available publishers and their options.
From the command line, the publisher module can be selected using the --publisher option, e.g.:

$ napalm-logs --publisher kafka

From the configuration file, the publisher can be specified using the publisher option, eventually with several
options. The options depend on the nature of the publisher.

Example: publisher configuration using the default configuration

publisher: zmq

Example: publisher configuration using custom options

publisher:
kafka:
topic: napalm-logs-out

Note: The IP Address / port for the publisher be specified using the publish-address and publish-port configuration
options.

Available publishers and their options

CLI

This publisher is for debugging use only and does not have additional configuration options. It can be used from the
CLI and the structured messages are printed in clear on the command line, e.g.:

3.5. Starting a Client 43

napalm-logs Documentation, Release Not installed

$ sudo napalm-logs --publisher cli

Kafka

Submit structured messages to Apache Kafka.

$ sudo napalm-logs --publisher kafka

Available options:

bootstrap_servers

host[:port] string (or list of host[:port] strings) that the consumer should contact to bootstrap initial cluster
metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a
Metadata API Request.

Example:

publisher:
kafka:
bootstrap_servers:

- kk1.brokers.example.org
- kk1.brokers.example.org:1234
- 192.168.0.1
- 192.168.0.2:5678

topic: napalm-logs

The Kafka topic to use when publishing messages.

Example:

publisher:
kafka:
topic: napalm-logs-out

Log

Forward objects to an external logging server.

$ sudo napalm-logs --publisher log

ZeroMQ

Publish objects over ZeroMQ where multiple clients can subscribe.

$ sudo napalm-logs --publisher zmq

Additionally, the user can configure the following options, available to all publishers:

44 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

send_raw

If this option is set, all processed syslog messages, even ones that have not matched a configured error, will be
published over the specified transport. This can be used to forward to log server for storage.

Example:

publisher:
zmq:
send_raw: true

send_unknown

If this option is set, all processed syslog messages, even ones that have not matched a certain operating system, will
be published over the specified transport. This can be used to forward to log server for storage.

Example:

publisher:
kafka:
send_unknown: true

3.5.7 Logger

The logger subsystem uses the modules from the publisher pluggable subsystem to send partially parsed syslog mes-
sages. The configuration options are the same as for the publisher referenced – see the Available publishers and their
options. It can be used together with the publisher system in such a way the publisher externalizes the fully processed
objects and the clients can subscribe and collect them, while the logger submits the partially parsed messages. This is
ideal for logging these unprocessed messages, hence the logger name.

This subsystem is by default disabled and it cannot be configured from the command line, but only from the configu-
ration file. Besides the publisher name to be specified, it also requires to configure at least one set one of the options
below:

send_raw

If this option is set, all processed syslog messages, even ones that have not matched a configured error, will be output
via the specified transport. This can be used to forward to log server for storage.

Example:

logger:
kafka:
send_raw: true

send_unknown

If this option is set, all processed syslog messages, even ones that have not matched a certain operating system, will
be output via the specified transport. This can be used to forward to log server for storage.

Example:

3.5. Starting a Client 45

napalm-logs Documentation, Release Not installed

logger:
zmq:
send_unknown: true

3.5.8 Development

Here we you will find out how to add new functionality to napalm-logs.

Pluggable Modules

napalm-logs is designed to be pluggable, so new methods for both input and output and can be added easily. This
is to allow for the widest compatibility possible.

Adding a New Module

If you need to use a different method to pass in your syslog messages or to get the processed messages, and it is not
yet defined, you can write your own.

These are the basic steps required, and are the same for all of the pluggable sections.

Create a new module in the appropriate directory, name it the same as the protocol it will be using.

Copy the general format from an existing module.

All options for your module can be specified in the general config file, these will be passed to your module as kwargs.

The module will be initialised, then started by calling the start() function.

If a signal is sent to the parent process, it will send a SIGTERM to your module, therefore this should be caught and
the module should exit cleanly.

This can be done by including the following in your start():

signal.signal(signal.SIGTERM, self._exit_gracefully)
self.__up = True
Code before the loop
while self.__up:

Code to execute for each object

Then adding the following function:

def _exit_gracefully(self, signum, _):
log.debug('Caught signal in <process name> process')
self.stop()

And also having a stop() which closes everything cleanly.

It is a good idea to look at some of the other modules to get an idea of how to structure yours.

Once written you should update __init__ in the appropriate directory to include your newly created class, and add
this class to the dict of all selectable classes.

If your module has dependencies then you should add a check to make sure the dependency is present, and call that
function before adding your class to the dict of all selectable classes.

If you would like to have any default values for your module you can add these to napalm_logs/config/
__init__.py under the appropriate *_opts dictionary.

46 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

Device Profiles

Most network equipment vendors use different syslog message format to each other, some even use a different format
for each of their devices. For napalm-logs to be able to take a syslog message from a device and output it in a
vendor-agnostic way, it needs to know the format of that device’s messages.

Each network operating system has a set of profiles, defined under a directory with the name of the platform, by default
defined under napalm_logs/config. For example, the profiles for eos are defined under napalm_logs/
config/eos/, for junos under napalm_logs/config/junos/ and so on.

Directory tree structure example:

napalm_logs/config/
__init__.py
eos

init.yml
iosxr

__init__.py
junos

init.yml
nxos

init.yml

The user can select to extend the capabilities of the public library, by defining profiles under a directory, specifying
the path using the extension-config-path option.

Custom directory tree example:

/pat/to/custom/config/
eos

bgp_3_notification.py
junos

init.yml
UI_DBASE_LOGIN_EVENT.py
SNMP_TRAP_LINK_DOWN.py

Each syslog message can be divided into two logical sections:

• the identification section, which provides enough information to identify the operating system that generated the
message, together with other details, such as datetime, hostname, PRI, process daemon, PID, etc. In napalm-
logs, this section will be referenced as prefix.

• the actual message section, which is the part of the syslog message which contains the useful information. In
napalm-logs, this section will be referenced as message.

Example: given the message Mar 30 12:45:19 re0.edge01.bjm01 rpd[15852]:
BGP_PREFIX_THRESH_EXCEEDED 1.2.3.4 (External AS 15169): Configured maximum
prefix-limit threshold(160) exceeded for inet-unicast nlri: 181 (instance
master):

• Mar 30 12:45:19 re0.edge01.bjm01 rpd[15852]: BGP_PREFIX_THRESH_EXCEEDED is
the prefix section.

• 1.2.3.4 (External AS 15169): Configured maximum prefix-limit
threshold(160) exceeded for inet-unicast nlri: 181 (instance master) is
the message section.

Both sections are platform-specific, and the prefix part can be used to idenfiy the operating system that generated a
certain syslog message. The identification is done via prefix matchers (prefix parsers). Similarly, the extraction of the
information from the message section is done via message parsers.

3.5. Starting a Client 47

https://www.balabit.com/documents/syslog-ng-ose-latest-guides/en/syslog-ng-ose-guide-admin/html/bsdsyslog-pri.html

napalm-logs Documentation, Release Not installed

Please note that some platforms do not respect a single prefix pattern, but a variety, this is why we need a couple of
prefix matchers.

YAML Profiles

Each config file has two distinct sections, one to identify the OS that the message originated from (called prefixes),
and one to identify each log message that napalm-logs should convert (called messages).

prefixes

This section defines what we have defined above as prefix matches, or prefix parsers, for the OS in question.

Here is the config for junos:

prefixes:
- time_format: "%b %d %H:%M:%S"
values:
date: (\w+\s+\d+)
time: (\d\d:\d\d:\d\d)
hostPrefix: (re\d.)?
host: ([^]+)
processName: /?(\w+)
processId: \[?(\d+)?\]?
tag: (\w+)
line: '{date} {time} {hostPrefix}{host} {processName}{processId}: {tag}: '

Note: Prefix parsers are usually defined as __init__.yml, init.yml or index.yml.

What does each option mean?

line

This represents the format of the part of the log message that present most of the time. Each section of the message
that can change should be replaced by a variable. If a variable isn’t always present then you should add it to the line
but make that variable optional (covered in the values section).

Any white space in line will match any number of contiguous white space, therefore if it is possible for there to be
either one white space or two white spaces, you should only add one white space to line.

values

This is used to specify the regex pattern for each of the variables specified in line. All variables in line should
have an entry under values, even if you have no use for them.

Each of these variables will be output in a message dict after processing.

messages

Here is where all log messages that should be matched are specified.

48 Chapter 3. How to use napalm-logs

napalm-logs Documentation, Release Not installed

Note: Message parsers are usually defined under a YAML file having the name of the error ID they produce. However,
this is not absolutely mandatory.

Here is an example message:

messages:
- error: INTERFACE_DOWN
tag: SNMP_TRAP_LINK_DOWN
values:

snmpID: (\d+)
adminStatusString|uppercase: (\w+)
adminStatusValue: (\d)
operStatusString|uppercase: (\w+)
operStatusValue: (\d)
interface: ([\w\-\/]+)

line: 'ifIndex {snmpID}, ifAdminStatus {adminStatusString}({adminStatusValue}),
→˓ifOperStatus {operStatusString}({operStatusValue}), ifName {interface}'

model: openconfig_interfaces
mapping:
variables:
interfaces//interface//{interface}//state//admin_status: adminStatusString
interfaces//interface//{interface}//state//oper_status: operStatusString
static: {}

What does each option mean?

error

This is the vendor agnostic ID for the error message, the error for each message should be unique. Currently we are
using the junos definitions where possible, this is likely to change.

tag

This is the unique ID from the device itself.

This field is used when identifying if the log message is related to the configured error. Some devices use the same
name for different types of logs, therefore this does not need to be unique.

If you look at the config for prefix above, you will see the variable tag in line, this is the same tag as configured
here and matched on.

match_on: tag

This field name the field that try to match on. Defaults to tag.

line

This is the same as line above.

3.5. Starting a Client 49

napalm-logs Documentation, Release Not installed

values

This is the same as values above, other than the fact they can be used in mapping (this will be covered un-
der mapping). You can manipulate these values using replace functions found in napalm_logs.utils.Replace i.e
adminStatusString|uppercase.

model

This is the YANG model to use to output the log message. You can find all models and their structure here.

mapping

This shows where in the OpenConfig model each of the variables in the message should be placed. There are two
options, variables and static. variables should be used when the value being set is taken from the message,
and static should be used when the value is manually set.

Pure Python profiles

Writing YAML profiles is flexible and fast, but this model comes with many logical limitations. For this reason, the
developer can equally write pure Python prefixes or messages parsers. They can be defined under the same
directory as the YAML descriptors, and they will be loaded dynamically.

Note: The user is allowed to use any combination of YAML and pure Python parsers to match the messages and
defined the prefixes.

Similarly to the YAML profilers, the Python profiles have two logical sections: prefixes that provide the operating
system identification and messages that extract the information from the raw syslog messages and maps to an object
having the YANG hierarchy. Both are free-form Python modules, with a single constraint that will be explained below.

prefixes

A pure Python module that provides the prefix configuration, in order to identify the operating system generating the
message.

A module providing the prefix needs to define a function called extract that takes a single argument, msg which
is the raw syslog message received from the network device. The function has to return a dictionary with the parts
extracted from the syslog message, without any further processing. The following keys are mandatory:

• host: the network device hostname, as provided in the syslog message

prefix section. - tag: which is the unique identification tag of the syslog message, e.g. in the message
Mar 30 12:45:19 re0.edge01.bjm01 rpd[15852]: BGP_PREFIX_THRESH_EXCEEDED 1.
2.3.4 (External AS 15169): Configured maximum prefix-limit threshold(160)
exceeded for inet-unicast nlri: 181 (instance master), the tag is
BGP_PREFIX_THRESH_EXCEEDED. Other tag examples: bgp_read_message, ROUTING-BGP-5-MAXPFX
or even Alarm set. - message: is the message that what we have defied earlier as the message section, e.g. User
'dummy' entering configuration mode.

Note: Prefix parsers are usually defined as __init__.py, init.py or index.py.

50 Chapter 3. How to use napalm-logs

http://ops.openconfig.net/branches/master/

napalm-logs Documentation, Release Not installed

The following example is a Python prefix parser for NX-OS:

import re
from collections import OrderedDict

import napalm_logs.utils

_RGX_PARTS = [
('pri', r'(\d+)'),
('host', r'([^]+)'),
('date', r'(\d+ \w+ +\d+)'),
('time', r'(\d\d:\d\d:\d\d)'),
('timeZone', r'(\w\w\w)'),
('tag', r'([\w\d-]+)'),
('message', r'(.*)')

]
_RGX_PARTS = OrderedDict(_RGX_PARTS)

_RGX = '\<{0[pri]}\>{0[host]}: {0[date]} {0[time]} {0[timeZone]}: %{0[tag]}:
→˓{0[message]}'.format(_RGX_PARTS)

def extract(msg):
return napalm_logs.utils.extract(_RGX, msg, _RGX_PARTS)

The example above matches messages from NX-OS looking like: <190>sw01.bjm01: 2017 Jul 26
14:42:46 UTC: %SOME-TAG: this is a very useful syslog message, and extracts the follow-
ing details:

• pri: 190

• host: sw01.bjm01

• tag: SOME-TAG

• date: 2017 Jul 26

• time: 14:42:46

• timeZone: UTC

• message: this is a very useful syslog message

These details are returned by the extract function, which returns a dictionary such as:

{
'pri': '190',
'host': 'sw01.bjm01',
'tag': 'SOME-TAG',
'time': '14:42:46',
'date': '2017 Jul 26',
'timeZone': 'UTC',
'message': 'this is a very useful syslog message'

}

Except tag, host and message, all the other fields can be optional, and they are platform-specific (or even
message-type-specific, in some very sad cases). However, there are some particular cases when the other fields can
provide interesting information, eventually to be used to match messages using the match_on option.

3.5. Starting a Client 51

napalm-logs Documentation, Release Not installed

messages

Writing a message parser can be equally simple and flexible, the rules to consider being:

• Define a function called emit that generates the syslog message.

• A dunder called __yang_model__ that specifies the YANG model.

• A variable names __tag__ that specifies the tag name, that is used to match when comparing the value of
the tag field extracted from the message prefix and determine what parser should process the syslog message.
However, this variable is optional – when not defined, it will use the filename as tag.

• A variable called __error__ that defines the name of the global error. Each structured message published by
napalm-logs has a certain error tag, that is unique and cross-platform. This variable is also optional – when not
defined, the error ID will be the file name.

Note: Message parsers are usually defined under a Python file having the name of the error ID they produce. However,
this is not absolutely mandatory.

Useful function

At times, the developer may find very useful several function, in order to acomplish recurrent tasks:

• napalm_logs.utils.extract: Extracts the fields from a unstructured text, given a field-regex mapping.
Please check the previous paragraph for an usage example.

• napalm_logs.utils.setval: Set a value under the dictionary hierarchy identified under the key. The
key 'foo//bar//baz' will configure the value under the dictionary hierarchy {'foo': {'bar':
{'baz': {}}}}. Example:

>>> napalm_logs.utils.setval('foo//bar//baz', 'value')
{'foo': {'bar': {'baz': 'value'}}}

• napalm_logs.utils.traverse: Traverse a dict or list using a slash delimiter target string. The target
'foo//bar//0' will return data['foo']['bar'][0] if this value exists, otherwise will return empty
dict. Return None when not found. This can be used to verify if a certain key exists under dictionary hierarchy.

52 Chapter 3. How to use napalm-logs

	Output data
	Install
	How to use napalm-logs
	Basic Configuration
	Starting napalm-logs
	Further Configuration
	Configuration file example
	Starting a Client

